
Weighted Graphs and Disconnected Components

Patterns and a Generator

Mary McGlohon
Carnegie Mellon University

School of Computer Science
5000 Forbes Ave.

Pittsburgh, Penn. USA
mmcgloho@cs.cmu.edu

Leman Akoglu
Carnegie Mellon University

School of Computer Science
5000 Forbes Ave.

Pittsburgh, Penn. USA
lakoglu@cs.cmu.edu

Christos Faloutsos
Carnegie Mellon University

School of Computer Science
5000 Forbes Ave.

Pittsburgh, Penn. USA
christos@cs.cmu.edu

ABSTRACT
The vast majority of earlier work has focused on graphs
which are both connected (typically by ignoring all but the
giant connected component), and unweighted. Here we study
numerous, real, weighted graphs, and report surprising dis-
coveries on the way in which new nodes join and form links
in a social network. The motivating questions were the fol-
lowing: How do connected components in a graph form and
change over time? What happens after new nodes join a
network– how common are repeated edges? We study nu-
merous diverse, real graphs (citation networks, networks in
social media, internet traffic, and others); and make the fol-
lowing contributions: (a) we observe that the non-giant con-
nected components seem to stabilize in size, (b) we observe
the weights on the edges follow several power laws with sur-
prising exponents, and (c) we propose an intuitive, genera-
tive model for graph growth that obeys observed patterns.

Categories and Subject Descriptors: I.6.4 [Computing
Methodologies]: Simulation and Modeling—Model Valida-
tion and Analysis; I.5 [Pattern Recognition]: Miscellaneous

General Terms: Measurement, Theory

1. INTRODUCTION
How do real graphs evolve over time? How do the different

components of an entire network form? What happens when
we take into account multiple edges and weighted edges?
Past work mainly focuses on static snapshots of graphs,
where fascinating properties have been discovered, the most
striking ones being the ‘small-world’ phenomenon [30] (also
known as ‘six degrees of separation’ [20]) and the power-law
degree distributions [3, 12]. Time-evolving graphs have at-
tracted attention only recently, where even more fascinating
properties have been discovered, like shrinking diameters,
and the so-called densification power law [17].

In virtually all the above cases, the analysis focused on
the ‘giant connected component’ (GCC), either explicitly or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

implicitly, and moreover it ignored multiple links between
nodes or weights on edges. Here we will shift our focus to
the components that are of moderate size but“disconnected”
from the GCC of the undirected graph, which we will refer to
as the “next-largest connected components” (NLCCs). We
will also look at edge weights, particularly at how weighted
edges are added over time.

The questions of interest are:

• How do the non-giant weakly connected components be-
have over time? One person might argue that they grow,
as new nodes are being added; and their size would prob-
ably remain a fixed fraction of the size of the GCC. Some-
one else might counter-argue that they shrink, and they
eventually get absorbed into the GCC. What is happen-
ing, in real graphs?

• What distributions and patterns do weighted graphs main-
tain? How does the distribution of weights change over
time– do we also observe a densification of weights as well
as single-edges? How does the distribution of weights re-
late to the degree distribution? Is the addition of weight
bursty over time, or is it uniform?

• Can we produce a generator that will mimic the above be-
haviors? The preferential attachment model generates a
single connected component. Most other generators try
to mimic the skewed in- and out-degree distributions,
and they also suffer from the same issue. Our goal is
to find a generator that mimics skewed degree distribu-
tion in unweighted graphs, as well as producing realistic
behavior of non-giant connected components.

Answering these questions is important to understand how
natural graphs evolve, and to (a) spot anomalous graphs
and sub-graphs; (b) answer questions about entities in a
network and what-if scenarios; and (c) discard unrealistic
graph generators.

Let’s elaborate on each of the above applications: Spot-
ting anomalies is vital for determining abuse of social and
computer networks, such as link-spamming in a web graph,
fraudulent reputation building in e-auction systems [23], de-
tection of dwindling/abnormal social sub-groups in a social-
networking site like Yahoo-360 (360.yahoo.com), Facebook
(www.facebook.com) and LinkedIn (www.linkedin.com), and
network intrusion detection [15]. Analyzing network prop-
erties is also useful for identifying authorities and search
algorithms [5, 8, 14], for discovering the “network value” of
customers for using viral marketing [27], or to improve rec-
ommendation systems [4]. What-if scenarios are vital for

extrapolation, provisioning and algorithm design: For ex-
ample, if we expect that the number of links will double
within the next year, we should provision for the appropri-
ate hardware to store and process the upcoming queries.

Finally, rules like the upcoming ones in this paper can
help us eliminate unrealistic graph generators. Graph gen-
erators are also vital, for simulation of algorithms (like com-
puter network routing algorithms), for simulation of rumor
(or virus, or influence) propagation, and many other set-
tings. In several such settings, real graphs may be difficult
or even impossible to collect: for example a who-believes-
whom graph is only in the mind of the human subjects; a
who-mails-whom graph may be protected by privacy laws.

Next we present related work (Section 2), background
material (Section 3), our observations on un-weighted and
weighted graphs, (Sections 5,6) our Butterfly generator model
(Section 7), and the conclusions.

2. RELATED WORK
Here we review properties of real-world graphs, as well as

several graph generators.
Laws and graph properties: Static, unweighted graphs
obey several impressive patterns: they usually have small
diameter (‘small world’ phenomenon), they have skewed de-
gree distributions with power-law tails [2, 12], and have sim-
ilar power laws with respect to the eigenvalues. A power law
is an equation of the form y = xa, with a being the exponent
of the power law.

For time-evolving graphs, there is the ‘Densification Power
Law’ [17], where real graphs obey the equation E(t) = N(t)a,
where a is the densification exponent. (For graphs studied
in this work, a fell between 1.03 and 1.7.)

Additional power laws seem to govern the popularity of
posts in citation networks, which drops over time, with power
law exponent of −1 for paper citations [26] or −1.5 for blog
posts [19]. Park et. al. report both static and dynamic
measurements of autonomous systems graphs [24]. Chi et
al. studied the evolution of communities over time [9]. The
work by Kumar et al. [13] seems to be the only one that stud-
ied components other than the giant connected component,
and showed that there is significant activity there.
Graph Generators: There are many graph generators,
and even a recent survey on them [7]. The oldest and prob-
ably the most studied is the Erdos-Renyi model where edges
are randomly placed among nodes. Although unrealistic,
this model leads to the fascinating phenomenon of phase
transition: at a critical ratio of edges to nodes, the graph
suddenly has high probability to have a ‘giant connected

component’ (GCC). The GCC has size O(n
2

3) [10].
Additional, more realistic models include the small world

model [30], the preferential attachment model [1], the For-
est Fire Model [17] and numerous more (the copying model,
the ‘winner does not take all’ model [25], Heuristically Op-
timized Trade-offs [11]). We refer to the above as emergent
generators, because they all have local rules (like prefer-
ential attachment), and yet they still manage to produce
the macroscopic patterns we observe (small diameter, etc).
There is a whole family of non-emergent generators, like
degree-sequence matching and the more recent “Kronecker”
graphs [16]. However, we focus on emergent graph genera-
tors here.

In conclusion, our work and the upcoming discoveries dif-

fer from all the earlier work, in the following major aspects:
(a) We explicitly focus on the NLCCs (‘next-largest con-
nected components’), while the overwhelming majority of
earlier work ignores them completely. (b) We are the first
to discover patterns in weighted graphs. (c) We give a natu-
ral emergent generator, which provably achieves a power law
in its out-degree, while still obeying all the other observed
laws, old and new.

3. PROPOSED METRICS
A static, unweighted graph G consists of a set of nodes V

and a set of edges E : G = (V, E). We represent the sizes of
V and E as N and E. The extensions to weighted, and/or
time evolving graphs are straightforward. In such cases,
an edge has a weight and/or a timestamp. Let’s stay with
unweighted graphs, for the moment.

Bipartite graphs, like the movie-actor graph of IMDB,
consist of disjoint sets of nodes V1 and V2, say, for authors
and movies, with no edges among nodes of the same type.

Our goals are to find patterns governing (a) the emergence
of a giant connected component, (b) the size of the NLCCs,
(c) the behavior of edge and weight additions over time.

For the first, we chose to study the diameter plot, that
is, the diameter d(t) as a function of time t, because we see
it has clear spike when the GCC emerges. (See the first
column of Fig. 2 and 3)

We will find that weight-addition over time is bursty and
self-similar (i.e. fractal), so we introduce tools, such as the
entropy plot, to assess the burstiness.

3.1 Diameter
How does the largest connected component of a real graph

evolve over time? Do we start with one large CC, that keeps
on growing? We propose to use the diameter-plot of the
graph, that is, its diameter, over time, to answer these ques-
tions. For a given (static) graph, its diameter is defined as
the maximum distance between any two nodes, where dis-
tance is the minimum number of hops (i.e., edges that must
be traversed) on the path from one node to another, ignoring
directionality.

Following earlier literature, we estimate the so-called ef-
fective diameter, which is the 90-percentile of the pairwise
distances among all reachable pairs of nodes. Estimating the
(effective) diameter is an orthogonal issue. We used sam-
pling to estimate it; alternative methods include ANF [22].

3.2 Burstiness and Entropy Plots
We will show that in weighted graphs, the addition of

weights is often bursty. In case that the traffic is self-
similar, then we can measure the burstiness, using the in-
trinsic, or fractal dimension of the cloud of timestamps of
edge-additions (or weight-additions). Let ∆W (t) be the to-
tal weight of edges that were added during the t-th interval,
e.g., the total network flow on day t, among all the machines
we are observing.

Among the many methods that measure self-similarity
(Hurst exponent, etc. [28]), we choose the entropy plot [29],
which plots the entropy H(r) versus the resolution r. The
resolution is the scale, that is, at resolution r, we divide our
time interval into 2r equal sub-intervals, sum the weight-
additions ∆W (t) in each sub-interval k (k = 1 . . . 2r), nor-
malize into fractions pk (= ∆W (t)/Wtotal), and compute the
Shannon entropy of the sequence pk: H(r) = −

P

k pk log
2
pk.

If the plot H(r) is linear in some range of resolutions, the
corresponding time sequence is said to be fractal in that
range, and the slope of the plot is defined as the intrinsic
(or fractal) dimension D of the time sequence. Notice that
a uniform weight-addition distribution yields D=1; a lower
value of D corresponds to a more bursty time sequence like
a Cantor dust [28], with a single burst having the lowest
D=0: the intrinsic dimension of a point. Also notice that
a variation of the 80-20 model, the so called ‘b-model’ [29],
generates such self-similar traffic.

4. DATA DESCRIPTION
We studied several large real networks, described in de-

tail in Table 1.We performed experiments on both uni- and
bipartite, and both weighted and unweighted graphs.

Several of our graphs had no obvious weighting scheme:
for example, a single paper or patent will cite another only
a single time. The graphs that did have weights are also fur-
ther divided into two schemes, multi-edges and edge-weights.
In the edge-weights scheme, there is an obvious weight on
edges, such as amounts in campaign donations, or packet-
counts in network traffic. For multi-edges, weights are added
if there is more than one interaction between two nodes.
For instance, if a blog cites another blog at a given time,
its weight is 1. If it cites the blog again later, the weight
becomes 2.

The datasets are gathered from publicly available data.
NIPS1, Arxiv and Patent [17] are academic paper or patent
citation graphs with no weighting scheme. IMDB indicates
movie-actor information, where an edge occurs if an actor
participates in a movie [3]. Netflix is the dataset from the
Netflix Prize competition2, with user-movie links (we ig-
nored the ratings); we also noticed that it only contained
users with 100 or more ratings. BlogNet and PostNet are
two representations of the same data, hyperlinks between
blog posts [19]. in PostNet nodes represent individual posts,
while in BlogNet each node represents a blog. Essentially,
PostNet is a paper citation network while BlogNet is an au-
thor citation network (which contains multi-edges).

NetTraffic records IP-source/IP-destination pairs, along
with the number of packets sent, per unit time, and Oregon
is an autonomous systems network 3. Auth-Conf, Key-Conf,
and Auth-Key are all from DBLP 4, with the obvious mean-
ings. CampOrg and CampIndiv are bipartite graphs from
U.S. Federal Election Commission. They record donations
(amounts) between political candidates and organizations,
and individuals to organizations 5.

In all the above cases, we assume that edges are never
deleted, because edge deletion never explicitly appeared in
these datasets.

5. UNWEIGHTED GRAPHS
We tracked several graph properties such as the diameter

of the graph, edge additions to the graph and the behavior of
the connected components of the graph over time. Here, we
report the recurring findings, that hold for all the real world

1www.cs.toronto.edu/∼roweis/data.html
2www.netflixprize.com
3University of Oregon Route Views project,
www.routeviews.org
4dblp.uni-trier.de/xml/
5www.cs.cmu.edu/∼mmcgloho/fec/data/ fec_data.html

graphs we analyzed and provide additional observations for
each specific dataset. Note that in this section only, for
the purposes of studying diameter and weakly connected
components, we will consider graphs undirected, that is
whenever there is a link from one node to another, we put an
undirected edge between them indicating that an interaction
has occured. Our later observations on weighted graphs will
return to directed versions of these graphs.

5.1 Diameter-plot and Gelling point
Studying the effective diameter of the graphs, we notice

that there is often a point in time when the diameter spikes.
Before that point, the graph is more or less in an estab-
lishment period, typically consisting of a collection of small,
disconnected components. This “gelling point” seems to also
be the time where the GCC “takes off”. After the gelling
point, the graph obeys the expected rules, such as the den-
sification power law; its diameter decreases or stabilizes; the
giant connected component keeps growing, absorbing the
vast majority of the newcomer nodes.

Observation 1 (Gelling point). Real graphs exhibit
a gelling point, at which the diameter spikes and (several)
disconnected components gel into a giant component.

In most of these graphs, both unipartite and bipartite,
there are clear gelling points. For example, in NIPS the
diameter spikes at t = 8 years, which is a reasonable time
for an academic community to gel. In some networks, we
only see one side of the spike, due to data construction (the
nature of trace-routes in Oregon and NetTraffic) or massive
network size (Patent).

We show full results for PostNet in Fig. 1, including the di-
ameter plot (Fig. 1(a)), sizes of the NLCCs (Fig. 1(b)), den-
sification plot (Fig. 1(c)), and the sizes of the three largest
connected components in log-linear scale, to observe how the
GCC dominates the others (Fig. 1(d)). Results from other
networks are similar, and are shown in condensed form for
space (Fig. 2 for unipartite graphs, and Fig. 3 for bipartite
graphs). The left column shows the diameter plots, and the
right column shows the NLCCs, which we describe next.

5.2 Constant/Oscillating NLCCs
We particularly studied the second and the third con-

nected component over time. We notice that, after the
gelling point, the sizes of these components oscillate over
time. Further investigation shows that the oscillation may
be explained as follows: new-comer nodes typically link to
the GCC; very few of the newcomers link to the 2nd (or
3rd) CC, helping them to grow slowly; in very rare cases,
a newcomer links both to an NLCC, as well as the GCC,
thus leading to the absorption of the NLCC into the GCC.
It is exactly at these times that we have a drop in the size
of the 2nd CC: Note that edges are not removed, thus, what
is reported as the size of the 2nd CC is actually the size of
yesterday’s 3rd CC, causing the apparent “oscillation”. This
intuition forms the basis for our upcoming Butterfly model
(Sec. 7).

An unexpected (to us, at least) observation is that the
largest size these components can get seems to be a constant.
This is counter-intuitive – based on random graph theory, we
would expect the size of the NLCCs to grow with increasing
N . Using scale-free arguments, we would expect the NLCCs
to have size that would be a (small, but constant) fraction of

Name Uni/bipartite Weights |N|,|E|,time Description

PostNet Unipartite None 250K, 218K, 80 days Posts from blogs
NIPS Unipartite None 2K, 3K, 13 yr. Citation network from NIPS
Arxiv Unipartite None 30K, 60K, 13 yr. Physics citations
Patent Unipartite None 4M, 8M, 17 yr. Patent citations
IMDB Bipartite None 757K, 2M, 114 yr. Actor-movie network
Netflix Bipartite None 125K, 14M, 72 mo. User-movie ratings
BlogNet Unipartite Multi-edges 60K, 125K, 80 days Social network of blogs based on citations
NetTraffic Unipartite Edge-weights

(Packet-size)
21K, 2M, 52 mo. Network traffic

Oregon Unipartite None 12K, 38K, 6 mo. Autonomous systems
Auth-Conf Bipartite Multi-edges 17K, 22K, 25 yr. DBLP Author-to-Conference associations
Key-Conf Bipartite Multi-edges 10K, 23K, 25 yr. DBLP Keyword-to-Conference associations
Auth-Key Bipartite Multi-edges 27K, 189K, 25 yr. DBLP Author-to-Keyword associations
CampOrg Bipartite Edge-weights

(Amounts)
23K, 877K, 28 yr. U.S. electoral campaign donations from organizations to can-

didates (available from FEC)
CampIndiv Bipartite Edge-weights

(Amounts)
6M, 10M, 22 yr. Election donations from individuals to organizations

Table 1: The datasets studied in this work.

the size of the GCC – to our surprise, this never happened,
on any of the real graphs we tried. If some underlying growth
does exist, it was small enough to be impossible to observe
throughout the (often lengthy) time in the datasets.

The second columns of Fig. 2 and Fig. 3 show the NLCC
sizes versus time. Notice that, after the “gelling” point
(marked with a vertical line), they all oscillate about con-
stant value (different for each network). The only extreme
cases are datasets with unusually high connectivity. For ex-
ample, Netflixhas very small NLCCs. This may be explained
by the fact the dataset is masked, omitting users with less
than a hundred ratings (possibly to further protect the pri-
vacy of the encrypted user-ids). Therefore, the graph has
abnormally high connectivity. Also, Oregon and NetTraf-
fic have unusually high connectivity due to the nature of
network traffic– it benefits from having a single GCC, so
NLCCs shrink to zero.

Observation 2 (Oscillating NLCCs). After the
gelling point, the secondary and tertiary connected compo-
nents remain of approximately constant size, with small os-
cillations.

6. WEIGHTED GRAPHS
Here we try to find patterns that weighted graphs obey. In

this section we consider graphs to be directed (and impose
a single direction in bipartite graphs), as this will be an im-
portant consideration on the weights. The typical weighted
graph is, say, the NetTraffic dataset, which records com-
puter network traffic. The dataset consist of quadruples:
(IP-source, IP-destination, timestamp, number-of-packets),
where timestamp is in increments of, say, 30 minutes. Thus,
we have multi-edges, as well as total weight for each (source,
destination) pair. Let W (t) be the total weight up to time
t (ie., the grand total of all exchanged packets across all
pairs), E(t) the number of distinct edges up to time t, and
Ed(t) the number of multi-edges (the d subscript stands for
duplicate edges), up to time t.

We present three “laws” that our datasets seem to follow:
The first is the “weight power law” (WPL) correlating the
total weight, the total number of edges and the total number
of multi-edges, as they change over time. The second is the
“snapshot power law” (SPL), correlating the in-degree with
the in-weight, and the out-degree with the out-weight, for
all the nodes of a graph, at a given time-stamp. The third

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

time

di
am

et
er

t=31

0 0.5 1 1.5 2 2.5

x 10
5

0

100

200

300

400

500

600

|E|

C
C

 s
iz

e

CC2
CC3

(a) Diameter(t) (b) CC2 and CC3 sizes

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

|E|

|N
|

t=31

0 10 20 30 40 50 60 70 80 90
10

0

10
1

10
2

10
3

10
4

10
5

10
6

time

C
C

 s
iz

e

CC1
CC2
CC3

t=31

(c) N(t) vs E(t) (d) GCC, CC2, and CC3 (log-lin)

Figure 1: Properties of PostNet network. Notice
that we experience an early gelling point at (a) (di-
ameter versus time), stabilization/oscillation of the
NLCC sizes in (b) (size of 2nd and 3rd CC, ver-
sus time). The vertical line marks the gelling point.
Part (c) gives N(t) vs E(t) in log-log scales - the good
linear fit agrees with the Densification Power Law.
Part (d): component size (in log), vs time - the GCC
is included, and it clearly dominates the rest, after
the gelling point.

is the “bursty-weight law” (BWL), showing that the weight
additions are bursty, over time.

6.1 Weight Power Law (WPL)
As defined above, suppose we have E(t) total unique edges

up to time t (ie., count of pairs that know each other) and
W (t) being the total count of packets up to time t. Is there a
relationship between W (t) and E(t)? If every pair generated
k packets, the relationships would be linear: if the count of
pairs double, the packet count would double, too. This is
reasonable, but it doesn’t happen! In reality, the packet
count over-doubles, following the “WPL” below. We shall
refer to this phenomenon as the “fortification effect”: more
edges in the graph imply super-linearly higher total weight.

0 2 4 6 8 10 12 14 16 18
10

15

20

25

30

35

40

45

50

time

di
am

et
er

t=1

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

time

C
C

 s
iz

e

CC2
CC3

t=1

(a) Patent Diam(t) (b) Patent NLCCs

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

10

11

time

di
am

et
er

t=3

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

time

C
C

 s
iz

e

CC2
CC3t=3

(a) Arxiv Diam(t) (b) Arxiv NLCCs

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

time

di
am

et
er

t=8

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

time

C
C

 s
iz

e

CC2
CC3

t=8

(a) NIPS Diam(t) (b) NIPS NLCCs

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

11

time

di
am

et
er

t=19

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

time

C
C

 s
iz

e

CC2
CC3

t=19

(a) BlogNet Diam(t) (b) BlogNet NLCCs

0 10 20 30 40 50 60
0

1

2

3

4

5

time

di
am

et
er

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time

C
C

 s
iz

e

CC2
CC3

(a) NetTraffic Diam(t) (b) NetTraffic NLCCs

1 2 3 4 5 6 7 8 9
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

time

di
am

et
er

(a) Oregon Diam(t) (b) Oregon NLCCs: N/A

Figure 2: Properties of other unipartite networks.
Diameter plot (left column), and NLCCs over time
(right); vertical line marks the gelling point. All
datasets exhibit an early gelling point, and stabi-
lization of the NLCCs. Oregon has no NLCC plot
since it consists of a single connected component, by
its construction.

0

2

4

6

8

10

12

14

16

18

20
Time = 1914

time

18
91

18
96

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

20
05

di
am

et
er

10
0

10
1

10
2

10
3

Time = 1914

time

C
C

 s
iz

e

18
91

18
96

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

20
05

CC2
CC3

(a) IMDB Diam(t) (b) IMDB NLCCs

0

1

2

3

4

5

6

Time = 1979

time

19
78

19
83

19
88

19
93

19
98

20
03

20
06

di
am

et
er

10
0

10
1

10
2

Time = 1979

time

C
C

 s
iz

e

19
78

19
83

19
88

19
93

19
98

20
03

20
06

CC2
CC3

(c) CampOrg Diam(t) (d) CampOrg NLCCs

0

1

2

3

4

5

6

7

8
Time = 1979

time

19
78

19
83

19
88

19
93

19
98

20
03

20
06

di
am

et
er

0

200

400

600

800

1000

1200
Time = 1979

time

C
C

 s
iz

e

19
78

19
83

19
88

19
93

19
98

19
99

CC2
CC3

(e) CampIndiv Diam(t) (f) CampIndiv NLCCs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time = Dec99

time

N
ov

99

A
pr

00

S
ep

00

F
eb

01

Ju
l0

1

D
ec

01

M
ay

02

O
ct

02

M
ar

03

A
ug

03

Ja
n0

4

Ju
n0

4

N
ov

04

A
pr

05

S
ep

05
D

ec
05

di
am

et
er

0

0.5

1

1.5

2

2.5

3

3.5

4
Time = Dec99

time

C
C

 s
iz

e

N
ov

99

A
pr

00

S
ep

00

F
eb

01

Ju
l0

1

D
ec

01

M
ay

02

O
ct

02

M
ar

03

A
ug

03
O

ct
03

CC2
CC3

(g) Netflix Diam(t) (h) Netflix NLCCs

Figure 3: Properties of bipartite networks. Diame-
ter plot (left column), and NLCCs over time (right),
with vertical line marking the gelling point. Again,
all datasets exhibit an early gelling point, and stabi-
lization of the NLCCs. Netflix has strange behavior
because it is masked (see text).

Observation 3 (Weight Power Law (WPL)). Let
E(t), W (t) be the number of edges and total weight of a
graph, at time t. They, they follow a power law

W (t) = E(t)w

where w is the weight exponent. Power-laws also link the
number of nodes N(t), and the number of multi-edges Ed(t),
to E(t), with exponents n and dupE, respectively.

The weight exponent w ranges from 1.01 to 1.5 for the real
graphs we have studied. The highest value corresponds to
campaign donations: super-active organizations that sup-
port many campaigns also tend to spend even more money
per campaign than the less active organizations. For bi-
partite graphs, we show the nsrc, ndst exponents for the
source and destination nodes (which also follow power laws:
Nsrc(t) = E(t)nsrc and similarly for Ndst(t)).

Fig. 5 shows all these quantities, versus E(t), for several
datasets. The plots are all in log-log scales, and straight
lines fit well. We report the slopes in Table 2.

6.2 Snapshot Power Laws (SPL)
What about a static snapshot of a graph? If node i

has out-degree outi, what can we say about its out-weight
outwi? It turns out that there is a “fortification effect” here,
too, resulting in more power laws, both for out-degrees/out-
weights as well as for in-degrees/in-weights.

Specifically, at a given point in time, we plot the scatter-
plot of the in/out weight versus the in/out degree, for all
the nodes in the graph, at a given time snapshot. An ex-
ample of such a plot is in Fig. 4 (c) and (d). Here, every
point represents a node and the x and y coordinates are its
degree and total weight, respectively. To achieve a good fit,
we bucketize the x axis with logarithmic binning [21], and,
for each bin, we compute the median y.

We observed that the median values of weights versus mid-
points of the intervals follow a power law for all datasets
studied. Formally, the “Snapshot Power Law” is:

Observation 4 (Snapshot Power Law (SPL)).
Consider the i-th node of a weighted graph, at time t, and
let outi, outwi be its out-degree and out-weight. Then

outwi ∝ outow
i

where ow is the out-weight-exponent of the SPL. Similarly,
for the in-degree, with in-weight-exponent iw.

We studied the snapshot plots for several time-stamps (for
brevity, we only report the slopes for the final timestamp
in Table 2 for all the datasets we studied). We observed
that SPL exponents of a graph over time remains almost
constant. In Fig. 4 (c) ((d)), the inset plot shows how the
iw(ow) exponent changes over time (years) for the CampOrg
dataset. We notice that iw and ow take values in the range
[0.9-1.2] and [0.95-1.35], respectively. That is:

Observation 5. (Persistence of Snapshot Power
Law) The in- and out-exponents iw and ow of the SPL re-
main about constant, over time.

Looking at Table 2, we observe that all SPL exponents
are > 1, which imply a“fortification effect”with super-linear
growth. The only exception is the NetTraffic dataset. This
is explained because the number of nodes N has a limit
that can not be exceeded (the total IP addresses at the in-
stitution of observation) (See WPL plot for NetTraffic in
Fig. 5). Until N reaches that point, the slopes are iw=1.19
and ow=1.27 (again, showing a “fortification effect”).

6.3 Weight additions
We tracked how much weight a graph puts on at each

time interval and looking at the entropy plots, we observed
that the weight additions over time show self-similarity. For
those weighted graphs where the edge weight is defined as
the number of reoccurences of that edge, the slope of the
entropy plot was greater than 0.95, pointing out uniformity.
On the other hand, for those graphs where weight is not in
terms of multiple edges but some other feature of the dataset
such as the amount of donations for the FEC dataset, we
observed that weight additions are more bursty, the slope
being as low as 0.6 for the Network Traffic dataset. Fig. 5

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Committee−to−Candidate Scatter Plot

|E|

0.58034x + (0.61917) = y
0.7302x + (−0.35485) = y
1.5353x + (0.44337) = y
1.2934x + (−1.1863) = y

|W|

|dupE|

|dstN|

|srcN|

(a) WPL plot (b) entropy plot

(c) inD-inW snapshot (d) outD-outW snapshot

Figure 4: Weight properties of CampOrg donations:
(a) shows all the power laws as well as the WPL;
the slope in (b) is ∼ 0.86 indicating bursty weight
additions over time; (c) and (d) have slopes > 1
(“fortification effect”), that is, that the more cam-
paigns an organization supports, the superlinearly-
more money it donates, and similarly, the more do-
nations a candidate gets, the more average amount-
per-donation is received. Inset plots on (c) and (d)
show iw and ow versus time. Note they are very
stable over time.

(b) column shows the entropy plots for the weighted datasets
we studied. ∆W values over time are also shown in insets
at the bottom right corner of each figure.

Observation 6. (Bursty/Self-Similar Weight
Additions) In all our graphs, the addition of weight
(∆W (t)) was self-similar, with fractal dimension ranging
from ≈1 (smooth/uniform), down to 0.6 (bursty).

7. GENERATIVE MODEL
The next goal is to find a generative model that will pro-

duce a social network that obeys properties observed in this
work as well as properties observed in previous work. We
would like it to reproduce the following properties:

• Constant next-largest weakly connected component sizes.

• Densification power law

• Shrinking diameter (perhaps after a “gelling point”)

• Power laws for in- and out-degree distribution

Moreover, we want an emergent generator, that will fol-
low a simple, local behavior, out of which these global pat-
terns will naturally emerge. Thus, we plan to have nodes
arriving one at a time, and we want to design the method
with which newcomers link to existing nodes, analogously
to the ‘preferential attachment’ of Barabasi et. al. [3], but
without the pitfalls of preferential attachment.

To achieve a long-tailed in-degree distribution, some form
of preferential attachment will suffice. In order to even have

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

Network Traffic Scatter Plot

|E|

0.57207x + (1.364) = y
1.4831x + (1.8818) = y
1.2962x + (−0.45562) = y

|dupE|

|N|

|W|

(a) NetTraffic WPLs (b) NetTraffic entropy

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Individual−to−Committee Scatter Plot

|E|

0.53816x + (0.71768) = y
0.92501x + (0.3315) = y
1.3666x + (0.95182) = y
1.1402x + (−0.68569) = y |W|

|dupE|

|dstN|

|srcN|

(a) CampIndiv WPLs (b) CampIndiv entropy

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Blog Network Scatter Plot

|E|

0.79039x + (0.52229) = y
1.0325x + (0.013682) = y

|N|

|W|

(a) BlogNet WPLs (b) BlogNet entropy

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

Author−to−Keyword Scatter Plot

|E|

0.90521x + (−0.53182) = y
0.70834x + (0.3202) = y
1.0131x + (−0.015421) = y

|dstN|

|W|

|srcN|

(a) Auth-Key WPLs (b) Auth-Key entropy

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Author−to−Conference Scatter Plot

|E|

0.96848x + (0.025756) = y
0.48588x + (−0.74581) = y
1.086x + (−0.17991) = y |W|

|srcN|

|dstN|

(a) Auth-Conf WPLs (b) Auth-Conf entropy

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Keyword−to−Conference Scatter Plot

|E|

0.85823x + (0.27754) = y
0.5493x + (−1.0495) = y
1.2251x + (−0.06747) = y

|srcN|

|dstN|

|W|

(a) Key-Conf WPLs (b) Key-Conf entropy

Figure 5: Properties of weighted networks. Left
column: weight power laws for each graph stud-
ied, (W , Ed, N ; vs E). The slopes for weight W
and multi-edges Ed are above 1, indicating “fortifi-
cation”. Right column: entropy plots for weight ad-
dition. Slope away from 1 indicates burstiness (eg.,
0.59 for NetTraffic) The inset plots show the cor-
responding time sequence ∆W versus time. Notice
how bursty NetTraffic looks.

w nsrc ndst dupE iw ow fd

CampOrg 1.53 0.58 0.73 1.29 1.16 1.30 0.86
CampIndiv 1.36 0.53 0.92 1.14 1.05 1.48 0.87
NetTraffic 1.48 0.57 NA 1.29 0.66 0.45 0.59
BlogNet 1.03 0.79 NA NA 1.01 1.10 0.96
Auth-Key 1.01 0.90 0.70 NA 1.01 1.04 0.95
Auth-Conf 1.08 0.96 0.48 NA 1.04 1.81 0.96
Key-Conf 1.22 0.85 0.54 NA 1.26 2.14 0.95

Table 2: Power law exponents for all the weighted
datasets we studied: The x-axis being the num-
ber of non-duplicate edges E, w : WPL exponent,
nsrc, ndst: WPL exponent for source and desti-
nation nodes respectively (if the graph is unipar-
tite, then nsrc is the number of all nodes), dupE :
exponent for multi-edges, iw, ow : SPL exponents
for indegree and outdegree of nodes, respectively.
Exponents above 1 indicate fortification/superlinear
growth. Last column, fd : slope of the entropy plots,
or information fractal dimension. Lower fd means
more burstiness.

disconnected components, we allow some newcomers to be-
come ‘bridges’, that can link the GCC with an NLCC.

To achieve a power-law in the out-degree distribution, we
vary one of the parameters of our model, so that it takes
uniform values.

7.1 Generative “Butterfly” model
With these considerations, we present the following model,

which we call the Butterfly as incoming nodes may behave
as “social butterflies” by choosing more than one starting
point, or “host”, in their interactions; meeting nodes in the
vicinity of the host, out-linking to some of them, and flying
away. The model uses three parameters. The first, plink,
determines how often a link is formed between two nodes,
and it is the same for all newcomers. The others, phost and
pstep are“friendliness”parameters: pstep decides whether the
’butterfly’ will take one more step in its random walk; phost

is the probability it will take one more host. We set pstep to
be different for each newcomer, uniformly distributed in the
range, say [0,1]. We set phost to be the same for all newcom-
ers.6 Expected number of hosts is (1/(1 − phost)−1) and ex-
pected number of steps per host chosen is (1/(1 − pstep)−1).

In the model, nodes join the network one at a time. With
probability phost, an arriving node, denoted current, picks
a host at random, and is assigned a pstep probability from
a uniform distribution. After choosing the host, current
travels in a random walk, recursively choosing at random
one of the neighboring nodes (including both in- and out-
links), taking each further step with probability pstep. Each
time current visits (or re-visits) a node, it out-links to the
visited node with plink probability. Once the traveling stops,
current returns to the starting state, choosing one more host
with probability phost and repeating, until no new hosts are
chosen. Pseudocode for the model is shown in Fig. 6.

We choose phost = 0.5 so the expected number of hosts is
1. However, once in a while, an arriving node chooses mul-
tiple hosts, allowing the possibility of two formerly discon-
nected components joining– which will reproduce the prop-
erty of NLCCs remaining small.

6Letting phost vary uniformly, also performed well empiri-
cally.

// generates a realistic looking graph
function butterfly

global p_link = 0.3

global p_host = 0.5
global G = new_graph()

for n = 1:N
current=new_node()

p_step = SampleUniform(0,1)
G.add_node(current)
while (SampleUniform() < p_host)

host = G.random_node()
visit(current, host)

// May also return an undirected version,
// to measure diameter
return(G)

// input: a newcomer, and host node to visit

// effect: it updates G, with the new edges,
// after current links to existing nodes

function visit(current, host)
// with prob. p_link, link to the contact_node
if (rand() < p_link)

G.add_directed_edge(current, host)
// with probability p_step, continue random walk

if (SampleUniform() < current.p_step)
next_visit = chooseRandom(host.neighbors())

visit(current, next_visit)

Figure 6: Pseudocode for Butterfly.

7.2 Analysis
We find that choosing the parameters as defined in the

above table, the results are remarkably similar to what is
displayed in real graphs. Note that the model displays a sta-
ble or shrinking diameter, and that after a burning off period
the second and third components demonstrate a threshold
at which they do not grow further without joining the GCC.

Theorem 1. For a given host, the number of visits an
arriving node forms follows power-law out-degree with expo-
nent −2.

Proof. Taking phost constant, the expected number of
steps y that an arriving node will take is 1

1−pstep
− 1. (1 −

pstep is the probability of stopping traveling at any time
point, so the number of steps taken before stopping follows
a geometric distribution with mean 1

1−pstep
, and the number

of visits is the number of steps before deciding to stop– the
mean minus one.) If pstep ∼ Unif(0, 1), we can do a trans-
formation to find the distribution of the expected number of
steps y [6]:

We represent Y = g(X), and the distribution over X is
uniform, fX(x) = 1. Since the function 1

x
is strictly mono-

tone decreasing, then g has inverse h = g−1, specifically
h(y) = 1

y
. So we have

fY (y) ∝ fX(h(y)) ∗ |
dh(y)

dy
| = h(y) ∗ | −

1

x2
| = fY (y) = x−2

So, expected number of visits follows a power law with
exponent −2.

We believe that holding plink constant, the degree dis-
tribution will follow a power law similar to the number of
visits; and multi-edges and multiple hosts contribute a small
amount to this factor, so empirical results perform well.

7.3 Empirical validation
We simulated the model 10 times for 100, 000 nodes, with

phost = 0.5 and plink = 0.3. One run’s results are shown in
Fig. 7. For each run the model exhibited power law in- and

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10
x 10

4

|N|

|E
|

1.4e−1 x1.17

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

80

|N|

N
LC

C
 s

iz
e

CC2
CC3

(a) N(t) vs E(t) (b) CC sizes (log-lin)

0 2 4 6 8 10

x 10
4

4

6

8

10

12

14

16

|N|

D
ia

m
et

er

10
0

10
2

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Degree

C
ou

nt

In−degree
Out−degree

(c) Diameter(N) (d) Degree distribution

Figure 7: Results of proposed Butterfly model
(phost=0.5, plink=0.3 pstep uniform. (a) Densification
power law (exponent: 1.17) (b) Stabilizing NLCCs
(between 20 and 50) (c) Small/shrinking diameter
(d) power laws in the PDF of in- and out- degree
distributions.

out-degree. Additionally, it displayed expected properties of
the undirected graph– densification and stable NLCC sizes.

For plink =0.3, the exponent had range (1.03, 1.17) All oc-
curring values of the exponent are within the range observed
in real graphs, and have a least-squares fit of R2 > 0.99
in log-log scales. Moreover, contrary to the Forest Fire
method [17], our generator is robust, producing realistic-
looking results for a wide range of parameter values (plots
omitted for space). In contrast, small deviations from rec-
ommended parameter values in Forest Fire led to unrealistic
densification exponents (either 1 or 2), and the model only
produced a single GCC.

8. CONCLUSION
We believe that the Butterfly model and the observation

of constant NLCC’s will shed light upon other research in
the area, such as a recent, counter-intuitive discovery [18]:
the GCC of several real graphs has no good cuts, so graph
partitioning and clustering algorithms cannot help identify
communities because no clear communities exist.

The main contributions of this work are the following:

• Patterns: The discovery of several surprising patterns:
early “gelling” point; power laws for weighted graphs
(WPL, SPL); burstiness and self-similarity in the weight
additions over time.

• Generative Model: Our proposed Butterfly model
matches observations: it exhibits shrinking diameter, sta-
bilizing NLCCs, and densification (with exponents com-
parable to real graphs). Furthermore it is intuitive, uses
only local information and it is parsimonious, requiring
only 3 parameters. It has further advantage over previ-
ous models in being robust, as parameters may be chosen
over a large range of values and produce realistic graphs.

We ran extensive experiments on multiple, diverse, real
graphs to identify common behaviors. We verified our ob-
servations on uni-partite, as well as bi-partite graphs, from
blogs, publications, movie-actor networks, and many others.
Our largest graph (CampIndiv) had 6 million nodes and 10
million edges, with annual time-stamps. Our datasets are
in the public domain, and both our observations and our
Butterfly model are easily reproducible.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grants No. IIS-0534205,
IIS-0705359; and under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Liver-
more National Laboratory under contract No.W-7405-ENG-
48. Mary McGlohon was partially supported by a National
Science Foundation Graduate Research Fellowship. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation, or other funding parties.

The authors would like to thank Christopher Neff for help
with the proofs.

9. REFERENCES
[1] R. Albert and A.-L. Barabasi. Statistical mechanics of complex

networks. Reviews of Modern Physics, 74:47, 2002.

[2] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the
world wide web. Nature, (401):130–131, 1999.

[3] A. L. Barabasi and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, October 1999.

[4] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at
multiple scales to improve accuracy of large recommender
systems. In KDD ’07: Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data
mining, pages 95–104, New York, NY, USA, 2007. ACM.

[5] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas.
Link analysis ranking: algorithms, theory, and experiments.
ACM Trans. Inter. Tech., 5(1):231–297, 2005.

[6] G. Casella and R. L. Berger. Statistical Inference. Duxbury,
2002.

[7] D. Chakrabarti and C. Faloutsos. Graph mining: Laws,
generators, and algorithms. ACM Comput. Surv., 38(1), 2006.

[8] S. Chakrabarti, B. E. Dom, S. R. Kumar, P. Raghavan,
S. Rajagopalan, A. Tomkins, D. Gibson, and J. Kleinberg.
Mining the web’s link structure. Computer, 32(8):60–67, 1999.

[9] Y. Chi, S. Zhu, X. Song, J. Tatemura, and B. L. Tseng.
Structural and temporal analysis of the blogosphere through
community factorization. In KDD ’07: Proceedings of the

13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 163–172, New York, NY,
USA, 2007. ACM.

[10] P. Erdos and A. Renyi. On the evolution of random graphs.
Publ. Math. Inst. Hungary. Acad. Sci., 5:17–61, 1960.

[11] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou.
Heuristically optimized trade-offs: A new paradigm for power
laws in the internet (extended abstract), 2002.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. SIGCOMM, pages
251–262, Aug-Sept. 1999.

[13] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution
of online social networks. In KDD ’06: Proceedings of the

12th ACM SIGKDD International Conference on Knowedge
Discover and Data Mining, pages 611–617, New York, 2006.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Core algorithms in the clever system. ACM Trans. Inter.

Tech., 6(2):131–152, 2006.

[15] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava.
A comparative study of anomaly detection schemes in network
intrusion detection. In Proceedings of the Third SIAM

International Conference on Data Mining, 2003.

[16] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable graph
generation and evolution, using kronecker multiplication.
PKDD, pages 133–145, 2005.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible
explanations. In KDD ’05: Proceeding of the eleventh ACM

SIGKDD international conference on Knowledge discovery
in data mining, pages 177–187, New York, NY, USA, 2005.
ACM Press.

[18] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Statistical Properties of Community Structure in Large Social
and Information Networks. In WWW ’08: Proceedings of the
International Conference on World Wide Web, 2008.

[19] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and
M. Hurst. Cascading behavior in large blog graphs: Patterns
and a model. In Society of Applied and Industrial
Mathematics: Data Mining, 2007.

[20] S. Milgram. The small-world problem. Psychology Today,
2:60–67, 1967.

[21] M. E. J. Newman. Power laws, pareto distributions and zipf’s
law, December 2004.

[22] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: A fast
and scalable tool for data mining in massive graphs. In
SIGKDD, Edmonton, AB, Canada, 2002.

[23] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe:
a fast and scalable system for fraud detection in online auction
networks. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 201–210,
New York, NY, USA, 2007. ACM.

[24] S.-T. Park, D. M. Pennock, and C. L. Giles. Comparing static
and dynamic measurements and models of the internet’s as
topology. In INFOCOM, 2004.

[25] D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and
C. L. Giles. Winners don’t take all: Characterizing the
competition for links on the web. Proceedings of the National
Academy of Sciences, 99(8):5207–5211, 2002.

[26] S. Redner. Citation statistics from more than a century of
physical review, Oct 2004.

[27] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing, 2002.

[28] M. Schroeder. Fractals, Chaos, Power Laws: Minutes from

an Infinite Paradise. W.H. Freeman and Company, New York,
1991.

[29] M. Wang, T. Madhyastha, N. H. Chang, S. Papadimitriou, and
C. Faloutsos. Data mining meets performance evaluation: Fast
algorithms for modeling bursty traffic. ICDE, Feb. 2002.

[30] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, (393):440–442, 1998.

