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Abstract 

Gradient is an important operator in signal processing. A gradient operation always is 

sensitive to noisy environment. In this paper, a new differential method is designed in the 

field of one-dimensional signal processing which is robust in low signal to noise ratio. The 

proposed scheme is suitable for signal differentiation in analog and digital signal processing 

applications. For low frequencies, this scheme performs the signal derivative, but for high 

frequencies recasts to a constant gain. This prevents differentiation of high frequency 

components of added noise. The proposed differential operator is applied to sound and image 

signals. Results show superiority of the proposed method. 
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1. Introduction 

Gradient is one of operators that widely used in signal processing. Noisy signal affect to 

extracted features from signal but gradient-based features disturb signal extremely. Many 

papers include discussion in removing of gradient problems. In [1], a method of removing 

gradient artifacts is presented which is applied in noise cancellation from 

electroencephalography and functional magnetic resonance imaging signals. Smoothing 

signal using wavelet transform and giving derivative with minimum noise was studied in [2]. 

In practice, in some references [3, and 4] problem of denoising a signal are considered, as 

some signal specifications like derivative are measured suitability. Also in wavelet domain 

in [5] a approach has been presented to the reconstruction of finite signal derivatives from 

the extrema of a multiscale representation. This work focuses on signal approximation from 

the multiscale extrema representation of one of its derivatives.  

In digital filters, the numerical differentiation is an unstable and risky operation, and 

should be under taken with great caution because it can greatly amplify noises [6, 7, 8 and 9]. 

This is mainly due to high frequency components of the noise signal. In the presence of noise, 

the noise amplification factor of a digital filter is given by the sum of the squares of the filter 

impulse response [9 and 10]. Also, noise amplification factors of various Savitzky-Golay 

digital differentiators are functions of the filter length. As the filter length increases or the 

degree of fitting polynomial decreases, the noise amplification factor deceases [11]. In [12] an 

autoregressive state-space approach is introduced for numerical differentiation of discrete-

time signals, where the signal is parameterized via the autoregressive process using the 

singular value decomposition based subspace method. An autoregressive (AR) state-space 

model is then constructed, where the state transition matrix is obtained from the AR 

coefficients. The numerical algorithms are used in a matrix form, based on the state transition 

matrix.  
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As we know, noise disturbs signal and is caused major problems in signal derivatives. 

Various noises is studied in signal derivation as in [14] effect of jitter noise is checked while 

derivation of signal. From practical viewpoint, signal derivative widely used in speech, 

image, video, and other types of signal [13]. For an example, gradient-based image 

registration [15] relies on image gradients to perform the task of registration. Therefore 

registration endanger in low signal to noise ratio which [15] use a filter for smoothing 

gradient. A new scheme for robust gradient vector estimation in color images is presented in 

[16]. In [17] a new method that is lookup-table-based gradient field reconstruction discussed 

and in [18] another use of gradient for image restoration described. Another methods that are 

used for finding the gradient is used of Taylor series, this method is very good and useful but 

it isn’t robust against noise for example in [19, 20, 21] theses methods are presented. 

In this paper, a new differentiation operator is presented for analog and digital applications. 

Noise suppression is an important property of this approach. The proposed method is not 

based on gradient smoothing, it is a new derivative operator that is based on integrator so we 

expect smoothing is performed because of its nature. In Section 2, proposed differentiator is 

presented. In Section 3, the proposed differential operator is applied over sound and image 

signal. Final section includes the conclusions. 
 

 2. The Proposed Differential Operator 

The proposed differential operator has been originated from Figure 1. This analog circuit 

able to obtain inverse function.  
 

 

Figure 1. The Block Diagram of Analog Circuit for Obtaining Inverse Function 
 

In Figure 1, function of  tvo or one analog computer can be linear or nonlinear function. 

According this scheme     txftvo

1 . In the following, a novel form of differentiator 

based on the above scheme is presented.  

Firstly, we suppose y(t) is response of universal linear differential equation: 
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where y(t) is an unknown dependent variable to be calculated. In the block diagram of Figure 

1, KCL at inverting input of the op-amp (2) gives rise to: 
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Substituting Eq.(2) in Eq.(1) gives us: 
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As Eq. (3) shows, vO(t) is a linear combination of differentials of x(t). To implement Eq. 

(1) with integrators, an n-fold integration is performed: 
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Or, 
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The circuit of Figure 2 is used to implement Eq. (5). 

 

 

 

Figure 2. Implementation of Equation (5) 
 

Each integrator is implemented with an op-amp RC circuit, and adder is also constructed 

using an op-amp adder circuit. Also, from viewpoint of circuit analysis, implementation of 

integrator is easier than the differentiator. 

 

2.1 Finite Gain Adder 

We consider the circuit of Figure 1 with the finite gain adder, as depicted in Figure 3. 

 

 

Figure 3. Equivalent Op-amp Circuit  
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Since the gain is finite, inverting input is not virtual ground. The KCL at the inverting 

input of the adder gives us: 
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Therefore: 
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In order to compute vO(t), one must insert y(t) from Eq. (5) in Eq. (6). 
 

 

2.2 Derivative Transfer Function 

Suppose in Figure 1, 
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Using Eq. (7), the transfer function of the system is: 
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When the adder gain is infinite, this transfer function reduces to H(s)=s, which is an ideal 

differentiator. For finite adder gain, on the other hand, the system behavior is different for low 

and high frequencies. For low frequencies, s<<a, therefore the system transfer function 

approximates an ideal differentiator.  In an image signal usually low frequencies are more 

important than high frequencies. Therefore the system differentiates the image signal. 

For high input frequencies, s>>a, and the system transfer function reduces to H(s)=a, i.e. a 

constant gain only. The noise signal usually includes low and high frequencies with equal 

energies. When a noisy signal is differentiated, high frequencies of noise cause serious 

problems. The derivative of high frequencies of noise will have large amplitudes. With the 

transfer function of (9), low frequencies of the main signal (and also noise) will be 

differentiated, whereas high frequencies will be multiplied by a constant gain. The adder gain 

must be chosen properly so that the system differentiates highest important frequencies in the 

main signal. 
 

2.3 Digital Implementation of the Differentiator 

In a digital signal processing system all equations must be implemented in the difference 

form. Suppose we want to implement the differentiation operator. The discrete form of Eqs. 

(7) and (8) are as follows: 
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Where, n is the sample number. We assume vO(0) is zero. Equation (10) gives digital 

integration of vO and Eq. (11) is the discrete form of Eq. (7). 

 

2.4 Implementing in FPGA 

We implement this method in FPGA to showed that this method is very simple and low 

cost but very useful for this purpose we use system generator in Simulink and implement it. 

Figure 4 shows the top level for test and Figure 5 shows the detail of this algorithm: 
 

 

Figure 4. Top Level 

 

 

Figure 5. Algorithm Detail 

 
The results are showed if Figures 6 and 7. 

Figure 6 shows a noisy triangular waveform. The normal derivative and the proposed 

signal derivative of the signal are shown in Figure 7. The adder gain a in Eq. (11) is selected 

0.47. 
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Figure 5. Noisy Triangular Wave 
 

 

 

Figure 7. Comparing of the Proposed Method for Signal Derivation and Normal 
Signal Derivation 

 

We define the performance as: 

N

pN
ePerformanc
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 
100  (12) 

 

Where N is sum of square error between normal derivation of the noisy signal and the 

derivative of noise free signal, and p is sum of square error between the proposed derivation 

of the noisy signal and the derivative of noise free signal. Figure 8 shows the performance of 

the proposed method compared with the normal derivative of the input signal. 
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Figure 8. The Performance of the Proposed Method per to different SNR (signal 
to noise ratio) 

 

In an environment without noise, the normal differentiator can be used, but in normal 

conditions which noise there exists, the proposed method is superior. Figure 9 shows a noisy 

sinusoidal signal and its derivation. As this figure shows, the proposed scheme attenuate high 

frequency noises in the signal derivative. 
 

 

Figure 9. Comparison of the Proposed Method for Signal Derivation and the 
Normal Signal Derivation 

 

The Z transform of Eqs. of (10) and (11) give, 
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Root locus of H(z) (sample rate has been selected 0.01 sample per second) for a=1.5 is 

depicted in Figure 10. It can be obtain for stability of this function 4a until pole of  zH is 

inside of unity circle. Increasing of a toward 4 is caused pole move to left of unity circle. 

With increasing of a system respond rapidly but move to instability.  
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Figure 10. Root Locus of  zH for 5.1a  

 

End of this section appropriates to utilization of the proposed differentiator over sinusoidal 

chirp signal. Adaptive recovery of a chirp sinusoid buried in noise or extraction of 

specifications of chirp signal as derivation is of special interest to researchers because the 

chirp sinusoid represents a well-defined form of nonstationarity. The chirp signal is given by: 

  ])2/2[exp()(   kkfjpkx cs  (14) 

Where, sp denotes the signal amplitude, cf  is the center frequency,   is the chirp rate and 

  is an arbitrary phase shift.  The signal )(kx  is deterministic but nonstationary because of 

the chirping.  

Figure 11 shows derivative of noisy chirp. It can be seen that the proposed method give 

better result relative conventional derivative. But for checking carefully, in Figure 12, a part 

of derivative signal is shown.  
 

 

Figure 11. Derivative of Noisy Chirp  
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Figure 12. Fine Comparing of the Proposed Derivative and Normal Derivative 
Over Selected Part of Figure 9 

 

In the next section, the proposed derivative method is applied over sound and image signal. 
 

3. Sound and Image Gradient using the Proposed Derivative 

In Figure 13, a Splash sound signal is shown. This signal has been captured with 

specifications of 8 bit resolution and 22050 samples/sec. In sound and speech processing, 

many features are based on derivation. Figure 14 shows Splash sound derivative using the 

proposed method and conventional numerical approach. Figure 15 shows part of figure 12 for 

better comparing. As shown in this figure, in real signal, signal derivative has many jump 

points. But the proposed method give excellent results. In this application a=0.47 has been 

selected (in Eq. (11)). 

 

 

Figure 13. Splash Sound with Specifications of 8 bit Resolution and 22050 
samples/sec 
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Figure 14. Splash Sound Derivative using the Proposed and Conventional 
Methods 

 

 

 

Figure 15. Fine Comparing of the Proposed Derivative and Normal Derivative 
Over Selected Part of Figure 12 

 

Image gradient is one of main operator in the field of image processing. Finding edge is 

one of gradient application. For testing of new gradient operator, true position of edge is 

necessary. A synthetic image as shown in Figure 16 (a) can help us for comparing 

conventional method and the proposed gradient method. Figure 16 (b) shows regions that we 

expect result of image gradient has small value. This regions (region of interest (ROI)) use for 

obtaining a quantitative criterion in comparison of the proposed and conventional operators. 
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(a)                                                                            (b) 

Figure 16. a) Test Image for Comparing the Conventional Gradient Operator 
and the Proposed Operator over Image Edge Detection; b) Region of Interest 

for Checking Result of Gradient 
 

After adding Gaussian noise to test image with zero mean and variance 
2 , following 

criteria is defined for evaluating of methods. 
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where i is error for method i (proposed or normal gradient) according to following,    
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where  yxf , is image gradient and is equal    yxfyxf yx ,,  and x , y are 

gradient in x and y directions respectively. In (16) n is number of region of interest. (16) give 

us sum of residual pixel value in total of ROI. Whatever i be smaller then method is better. 

(15) help us for comparing of two method, the proposed and conventional methods. A small 

relative error (smaller than one) means the proposed method has lower error relative to the 

normal method. Figure 17 shows relative error versus variance of image noise. Noise variance 

is varied from 0.0001 to 1.000 which corrupted image has been shown in this two variance in 

Figure 18. In this application a=0.97 has been selected (in Eq. (11)). This result shows 

superiority of the proposed gradient relative normal gradient. 
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Figure 17. Relative Error versus Variance of Image Noise 
 

 

 

Figure 18. Corrupted Image with Gaussian Noise with Variances of 0.0001 (Left 
image) and 1.000 (Right Image) 

 

 

4. Conclusions 

When the derivative of a noisy signal is computed, high frequency components of noise 

causes serious problems. We proposed a new differentiation scheme, which in high 

frequencies recasts to a constant gain, whereas in low frequencies differentiates the signal. In 

image signals most of the signal energy is concentrated in low frequency components. On the 

other hand, noise energy is uniform distribution in the frequency domain. The proposed 

scheme prevents high frequency components of the noise to differentiate. Examples show that 

the method efficient for signal derivative.  
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