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Abstract

A novel algorithm for 2D object orientation and scaling factor estimation, is proposed in
this paper. The proposed method is accurate, effective, computationally efficient and fully-
automated. The object orientation is calculated by using object principal axes estimation.
The main contribution of the proposed approach is the utilization of a 2D empirical mode like
decomposition (EMD-like) as a new workspace for principal axes and scaling determination.
The EMD algorithm can decompose any nonlinear and non-stationary data into a number
of intrinsic mode functions (IMFs). When the object is decomposed by empirical mode
like decomposition (EMD-like), the IMFs of the object, provide a workspace with very good
properties for calculating the principal axes. The method was evaluated on synthetic and
real images. The experimental results demonstrate the effectiveness and the accuracy of the
method, both in orientation and scaling estimations.

keywords: Principal axes estimation, orientation estimation, scaling estimation, empir-
ical mode decomposition, ensemble empirical mode decomposition, intrinsic mode.

1 Introduction

The last two decades, the wide use of web and the easy access to cameras lead to an
explosion of online and offline usage of image collections. Whether it has to do with
personal albums, posted images to the web or with large image databases, always digital
images should be displayed in the correct orientation and scale. Unfortunately, this is
not a simple task and is often performed manually. Furthermore, many image and video
processing algorithms assume a priori knowledge of the image or of the depicted objects
orientation and scale.

The object orientation and scaling factor estimation problem are central problems in
several research areas, such as robotics, computer graphics, image and video processing,
pattern recognition and computer vision. Depending on the kind of the problem, object
orientation and scaling estimation can be used in different ways [19], i.e., in robotics are
commonly used in hand-eye coordination systems [6], in computer graphics aim at com-
bining computer-generated objects with photographic scenes and in computer vision are
extensively used to many approaches as a preprocessing step [34].

In the computer vision literature, several approaches have been mentioned for estimating
the orientation of a target object [29, 34]. Most of them work for arbitrary 3D target point
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configurations [2], some have been extended to use points and lines [1] and some work also
for coplanar points [19]. Recent success has also been reported for online structure and
motion estimation [20], where many interest points are extracted; frame-to-frame corre-
spondence is rather easy and no a priori reference to a scene coordinate system is required.
In many research approaches, characteristic features are extracted from the image visual
content which include e.g. shape, texture, or color properties defined in the imagery domain
[5, 11, 21, 22, 23, 25, 27, 28].

Most of the systems (computer vision, pattern recognition, content based image retrieval,
etc.) which exploit shape, tries to utilize information and features of the image that are
invariant to some geometrical transformations such as rotation and scaling. The objects
under examination and the target images may not have the same orientation and scaling, a
fact that raises many difficulties in various research areas. On the other hand, the utilization
of invariant image features tends to throw out some other, often useful features. Thereby,
the determination of the principal axes of an object and the estimation of differences in
orientation and scaling between the objects under consideration, seems to be a main problem
in computer vision and pattern recognition applications and research.

In [16], the authors determine the orientation and scaling of an object by exploiting the
frequency-based features, derived by the free vibrations of an initial circular chain code
(physics-based modeling), which parameterizes the contour of the object under considera-
tion. The object shape is also exploited in [10] in order to examine the role of local and
global orientation in visual search. It was demonstrated that search for the global orien-
tation of configurations of contours was very efficient, provided that the stimuli had an
unambiguous global orientation. It was also found that it is more reliable, when a method
is based on global shape orientation, rather than on the orientation of local contours. Con-
sistent with this, the authors described the global orientation as axial, which suggests that
the assignment of an orientation to a shape is accomplished by deriving the principal axes
on the basis of contour information.

The axes of symmetry of the shape could be detected using any of the well known
techniques reported in the literature. In [8] the edge points of the shape was exploited in
order to find the orientation of an object shape. The internal edges were used in addition
to the external boundary edges to increase the orientation detection capabilities of the
introduced algorithm. First, the edge map of the image was extracted by applying Canny
edge detector [4]. Second, the center of the object is detected by calculating the average
of the vertical and horizontal coordinates of the points of the edge map. Third, the total
perpendicular absolute distances from the edge map points to the line that passes through
the center point with specified angle were calculated. These calculations were repeated
with different angles to find the angles of the minimum peaks of the calculated distances.
Finally, if the shape has more than one minimum peak an averaging method was adopted
to get the dominant direction angle of the shape or the shape orientation.

There is a large number of methods determining the principal axes (object pose) in the
literature [7, 14, 18]. The majority of them, which are constrained to exploit only contour
information, are based on the well-known principal component analysis (PCA) method [14].
PCA is a standard decorrelation technique which aims at deriving an orthogonal projection
basis that directly leads to dimensionality reduction, and possibly to feature selection. In
the 2D case, the dimensionality reduction, i.e., the orthogonal axes that are derived, can be
concerned as the principal axes of the shape (points) under examination. A great variety
of PCA algorithms lies in the literature offering akin results, dimension reduction and in
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2D case the principal axes of the object, such as Kernel PCA [33], independent component
analysis (ICA) [17] and principal coordinates analysis (PCoA or PCO) [12, 15].

This paper deals with the afore mentioned problem. It presents a novel workspace that
drives existing principal axes determination methods to achieve more robust and accurate
results. The contour of the object under consideration is decomposed using an Empirical
Mode Like Decomposition (EMD-like) algorithm based on the original EMD method [13,
31], which produces the contour IMFs. The object shape IMFs assign a new workspace
with very good properties for calculating its principal axes and scaling factor. Moreover,
the proposed method seems to be robust against to missing contour data (noise, cropping,
etc), which are frequently appeared due to the segmentation methods that are utilized.

The remainder of the paper is organized as follows. The 2D Empirical Mode Like De-
composition (EMD-like) with its ensemble mode (EEMD-like), as well as the estimation of
the principal axes and the scaling factor of the object under examination, are introduced
in Section 2. Experimental results are presented in Section 3 and conclusions are drawn in
Section 4.

2 The New Workspace and the Algorithm for Object Principal

Axes and Scaling Estimation

In this Section, a new workspace for object orientation and scaling determination derived
from the exploitation of the 2D empirical mode like decomposition (EMD-like) and its
intrinsic mode functions (IMFs), will be introduced. More details regarding the original
decomposition process, its properties and all the adopted assumptions are presented in
[13, 31]. Furthermore, the algorithm for object principal axes and scaling estimation based
on the introduced workspace will be presented in the end of this Section.

The basic idea embodied in the EMD analysis is the decomposition of any complicated
data set into a finite and often small number of intrinsic mode functions, which have
different frequencies, one superimposed on the other. The main characteristic of the EMD,
in contrast to almost all previous decomposition approaches, is that EMD works directly
in temporal space, rather than in the frequency space. The EMD method, as Huang et al.
pointed out [13], is direct intuitive and adaptive with an a-posteriori defined basis based
on and derived from the data and therefore, highly efficient. Since the decomposition of
the input signal is based on the local characteristic time scale of the data, the EMD is
applicable to nonlinear and non-stationary process.

The IMFs obtained by the decomposition method, constitutes an adaptive basis, which
satisfies the majority of properties for a decomposition method, i.e., the convergence, com-
pleteness, orthogonality and uniqueness. Moreover, EMD algorithm copes with stationarity
(or the lack of it) by ignoring the concept and embracing non-stationarity as a practical
reality [13].

The possibly non-linear signal, which may exhibit varying amplitude and local frequency
modulation, is linearly decomposed by EMD into a finite number of (zero mean) frequency
and amplitude modulated signals. The remainder signal, called as a residual function, is a
monotonic trend or is simply a constant.
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2.1 The 1D Original Empirical Mode Decomposition (1D EMD)

Let us briefly review the original 1D empirical mode decomposition (EMD). In the EMD
algorithm, the data x(t) is decomposed in terms of IMFs ci, as follows:

x(t) =
N
∑

i=1

ci + rN , (1)

where rN is the residue of data x(t), after N number of extracted IMFs. IMFs are simple
oscillatory functions with varying amplitude and frequency, and hence have the following
basic properties:

• Throughout the whole length of a single IMF, the number of extrema and the number
of zero-crossings must either be equal or differ at most by one (although these numbers
could differ significantly for the original data set).

• At any data location, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

In practice, the EMD is implemented through a “sifting process” that uses only local
extrema. From any data ri−1, the procedure is as follows:

1. Identify all the local extrema (the combination of both maxima and minima), connect
all these local maxima (minima) with a cubic spline as the upper (lower) envelope,
and calculate the local mean mi of the two envelopes.

2. Obtain the first component h = ri−1 −mi by taking the difference between the data
and the local mean of the two envelopes.

3. Treat h as the data and repeat steps 1 and 2 as many times as required until the
envelopes are symmetric with respect to zero mean under certain criteria.

The final h is designated as ci. The procedure can be repeatedly applied to all subsequent
ri, and the result is

x(t)− c1 = r1
r1 − c2 = r2

· · ·
rN−1 − cN = rN .

(2)

The decomposition process finally stops when the residue, rN , becomes a monotonic
function or a function with only one extremum from which no more IMF can be extracted.
By summing up equation (2), one can derive the basic decomposition equation (1). This
means that a signal x(t) is decomposed to N IMFs (ci) and a residual rN signal.

The very first step of the sifting process is depicted in Figure 1. Figure 1(a) depicts the
original input data, while Figures 1(b) and 1(c) show the extrema (maxima and minima)
of the data with their corresponding (upper and lower) envelopes. Figure 1(d) depicts the
average of the two (upper and lower) envelopes, and Figure 1(e) illustrates the residue signal,
that is the difference between the original data and the mean envelope. This procedure is
repeated, as mentioned above, and all the IMFs are extracted from the original input signal.
An example of the EMD algorithm and the extracted IMFs for the input data shown in
Figure 1(a), is presented in Figure 2.

Based on this simple description of EMD, Flandrin et al. [9] and Wu and Huang [30]
have shown that, when the data consists of white noise, the EMD behaves as a dyadic

4

International Journal of Signal Processing, Image Processing and Pattern Recognition 
Vol. 5, No. 3, September, 2012

164

RonCay
Rectangle



0 100 200 300 400 500 600

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) 0 100 200 300 400 500 600

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

0 100 200 300 400 500 600

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) 0 100 200 300 400 500 600

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

0 100 200 300 400 500 600

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(e)

Figure 1. The very first step of the sifting process. (a) is the input data, (b) identifies
local maxima and plots the upper envelope, (c) identifies local minima and plots the
lower envelope, (d) plots the the mean of the upper and lower envelope, and (e) the
residue, the difference between the input data and the mean of the envelopes.
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Figure 2. The intrinsic mode functions (IMFs) of the input data displayed in Figure
1(a).

filter bank: the Fourier spectra of various IMFs collapse to a single shape along the axis of
logarithm of the period or the frequency. Then the total number (N+1) of IMFs of a data
set is close to log2N

′, with N ′ being the number of total data points. On the other hand,
when the data is not pure noise, some scales could be missing, and as a consequence, the
total number of the IMFs might be fewer than log2N

′. Additionally, the intermittency of
signals in certain scale would also cause mode mixing.

One of the major drawbacks of EMD is mode mixing. Mode mixing is defined as a single
IMF either consisting of signals with widely disparate scales or consisting of a signal with
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a similar scale residing in different IMF components. Mode mixing is a consequence of
signal intermittency. The intermittency could not only cause serious aliasing in the time-
frequency distribution but could also make the individual IMF lose its physical meaning
[13]. Another side effect of mode mixing is the lack of physical uniqueness. Supposing that
two observations of the same oscillation are made simultaneously, one contains a low level
of random noise and the other does not. The EMD decompositions for the corresponding
two records are significantly different [32].

However, since the cause of the problem is due to mode mixing, one expects that the
decomposition would be reliable if the mode mixing problem is alleviated or eliminated. To
achieve the latter goal, i.e., to overcome the scale mixing problem, a new noise-assisted data
analysis method was proposed, named as the ensemble EMD (EEMD) [32]. The EEMD
defines the true IMF components as the mean of an ensemble of trials, each one consisting
of the signal with white noise of finite amplitude.

The ensemble EMD (EEMD) algorithm could be summarized as follows:

1. add a white noise series w(t) to the original input data xi(t) = x(t) + wi(t),

2. decompose the data with added white noise into a number of IMFs cjk(t),

3. repeat steps 1 and 2 but with different white noise series each time, and

4. obtain the (ensemble) means of corresponding IMFs cj(t) = lim
L→∞

1

L

L
∑

k=1

cjk(t) of the

decomposition as the final result.

The critical concepts advanced in EEMD are based on the following observations:

• A collection of white noise cancels each other out in a time-space ensemble mean.
Therefore, only the true components of the input data can survive and persist in the
final ensemble mean.

• Finite, not infinitesimal, amplitude white noise is necessary in order to force the
ensemble to exhaust all possible solutions.

• The physically meaningful result of the EMD is not derived from the data without
noise, but it is designated to be the ensemble mean of a large number of EMD trials
of the input data with the added noise.

The mode mixing is largely eliminated using EEMD, and the consistency of the decom-
positions of slightly different pairs of data is greatly improved. Indeed, EEMD represents
a major improvement over the original EMD. Furthermore, since the level of the added
noise is not of critical importance and of finite amplitude, EEMD can be used without
any significant intervention. Thus, it provides a truly adaptive data analysis method. The
EMD, with the ensemble approach (EEMD), has become a more mature tool for nonlinear
and non-stationary time series (and another one dimensional data) analysis.

2.2 The New Workspace - The 2D Empirical Mode Like Decomposition (2D
EMD-like)

In the proposed 2D EMD-like algorithm, the input data is a number of marked points
on the object contour, which do not represent interior object regions. The coordinates of
the object under examination are stacked in the vector:

v = [v1,v2, . . . ,vM], (3)
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where vi = [xi, yi]
T denotes the i-th object contour point, and M is the number of contour

points. In 2D EMD-like algorithm, the data v is decomposed in terms of IMFs ci, as
follows:

v =
N
∑

i=1

ci + rN, (4)

where rN is the residue of data v, after N number of IMFs are extracted. In practice, the
2D EMD-like is implemented through a “sifting process” that uses only local extrema. For
any data ri−1, the procedure is as follows:

1. Identify all the local extrema (the combination of both maxima and minima), con-
nect all these local maxima (minima) with lines as the upper (lower) envelope, and
calculate the local mean mi of the two envelopes.

2. Obtain the first component h = ri−1 −mi by taking the difference between the data
and the local mean of the two envelopes.

3. Treat h as the data and repeat steps 1 and 2 as many times as required.

The final h is designated as ci. The procedure can be repeatedly applied to all subsequent
ri, and the result is:

v − c1 = r1
r1 − c2 = r2

· · ·
rN−1 − cN = rN.

(5)

The decomposition process finally stops when the residue, rN , becomes a monotonic-
like function. As experimentally has been proven, this happens, when the total number of
extracted IMFs is close to log2M , with M being the number of total object contour points.
By summing up equation (5), one can derive the basic decomposition equation (4). This
means that a signal v is decomposed to N IMFs (ci) and a residual rN signal.
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Figure 3. The very first step of the sifting process. (a) is the input contour, (b) iden-
tifies local maxima and plots the upper envelope, (c) identifies local minima and plots
the lower envelope, (d) plots of the average between the upper and lower envelope.
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Figure 4. The intrinsic mode functions (IMFs) of the input contour displayed in Fig-
ure 3(a).

The very first step of the sifting process is depicted in Figure 3. Figure 3(a) depicts the
original input data, while Figures 3(b) and 3(c) show the extrema (maxima and minima)
of the data with their corresponding (upper and lower) envelopes. Figure 3(d) depicts the
average of the two (upper and lower) envelopes. This procedure is repeated, as mentioned
above, and all the IMFs are extracted from the original input object contour. An example
of the 2D EMD-like algorithm and the extracted IMFs for the input data shown in Figure
3(a), is presented in Figure 4.

Similar to the original 1D EMD, the total number (N +1) of IMFs of the data set in the
2D EMD-like algorithm, is very close to log2M , with M being the number of total object
contour points. In practice the number M of object contour points is calculated after the
removal of all the collinear points.

Furthermore, the EMD drawback of mode mixing also existes in the previously described
2D EMD-like case. Thus, we define an Ensemble EMD-like (EEMD-like) algorithm, which
defines the true IMF components as the mean (ensemble) of an ensemble of trials, each one
consisting of the signal with white noise of finite amplitude.

The ensemble EMD-like (EEMD-like) algorithm could be summarized as follows:

1. add a white noise series w to the original input data vi = v +wi,

2. decompose the data with added white noise into a number of IMFs cjk,

3. repeat steps 1 and 2 but with different white noise series each time, and
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4. obtain the (ensemble) means of corresponding IMFs cj = lim
L→∞

1

L

L
∑

k=1

cjk of the de-

composition procedure as the final result.

2.3 Object Principal Axes and Scaling Estimation

The algorithm for object principal axes and scaling estimation based on the introduced
workspace (2D EEMD-like), will be consequently introduced.

One can easily see from the aforementioned examples that the first and foremost IMFs
(c1, . . . , cNA−1) mainly carries the object contour “noise”, missing the data or outliers
(contour noise, cropping, etc.), while the latest IMFs (cNB+1, . . . , cN ) and the residue rN
mostly describe the trend of the object contour. On the other hand, intermediate IMFs
(cNA

, . . . , cNB
) describe the initial object contour with simple and uniform curves. This is

the main reason that the proposed method is focused on cNA
to cNB

IMFs, where NA and
NB define the range of IMFs under consideration. Let us define the summation cNA,NB

of
these IMFs as follows:

cNA,NB
=

NB
∑

i=NA

ci. (6)

Once the new workspace has been defined for the principal axes and scaling estimation,
and the outlier IMFs have been removed, the proposed method applied a well known algo-
rithm [14, 16] to define the principal axes and the scaling factor of each produced summation
ci,N :

{θi, si} = estim {ci,N + rN} , (7)

where θi and si are the estimated principal axis and the scaling factor respectively, derived
from the estim algorithm, and i = NA, . . . , N . The final principal axis θ and the scaling
factor s is extracted as follows:

θ =
1

N −NA + 1

N
∑

k=NA

θk,

s =
1

N −NA + 1

N
∑

k=NA

sk.

(8)

Figure 5 illustrates an example of estimating the principal axes of an image (Figure
5i) and the same image rotated by 35o and scaled with factor 1.5 (Figure 5i). The axes
that are depicted in both images are the principal axes, as estimated by the proposed
workspace exploiting the method proposed in [16]. In Figure 5a, the summations c1,8 of
the derived IMFs of images 5i and their extracted principal axes are respectively depicted,
while Figures 5b show the summations c2,8 of the derived IMfs of images 5i and their
principal axes respectively. In the same way, Figures 5c - 5h depict the summations ci,8 of
the derived IMfs of images 5i and their extracted principal axes respectively. One can easily
notice that the estimated principal axes in the produced summations (Figures 5a - 5h) have
small deviations. This fact occurs because the first and foremost IMFs summations carry a
lot of contour outliers (contour noise, cropping, etc), while the latest form the main object
shape without important details. Thus, the intermediate IMFs summations, c3,8 − c5,8
in our example, carry the main shape information free of outliers. Based on those IMFs
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. (a) - (h) The summations c1,8 of the IMFs of the images under con-
sideration and their corresponding principal axes as they produced by the proposed
algorithm. (i) The final image set illustrate the images under consideration (original
image and its copy scaled with factor 1.5 and rotated 35o) and their final principal
axes.

summations, the proposed algorithm extracts the principal axes exploiting equations (7)
and (8) of the objects under consideration (Figure 5i).

The proposed object principal axes and scaling estimation algorithm could be summa-
rized as follows:

1. compute the 2D EEMD-like algorithm on the object contour under consideration,

2. remove the IMFs of the outliers (first and foremost),

3. estimate the principal axes and scaling factor of each remaining IMF separately by
exploiting algorithm [14, 16],

4. obtain the (ensemble) means of corresponding estimations as the final result.

3 Experimental Results

To evaluate the proposed workspace, the presented algorithm was applied to a number
of natural images (over 500 images) collected from the Internet and also applied to the
shape database used by Sebastian et al. [24] (e.g. Figures 6 and 7). They were manually,
artificially scaled and rotated, i.e. they were randomly transformed using scalings s varying
from 0.25 to 4.0 and rotations θ varying from -90o to +90o, in order to measure and confirm
the principal axes and scaling factor estimation accuracy and efficiency of the proposed
algorithm. In other words, the accuracy of the derived transformation parameters (θ and
s) by the principal axes estimation have been measured. Moreover, the proposed algorithm
has been used in combination of the well-known principal component analysis (PCA) [14], as
well as of a physics-based method [16]. Furthermore, the results of the proposed algorithm
are compared with results obtained by the pure aforementioned methods (without the
use of the introduced workspace) applied to the same transformations with the proposed
method. Since, the principal axes of an object is, in most cases, an objective subject, the
proposed method has been examined in estimating the principal axes of an object and the
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transformed one, and the accuracy of transformation retrieval among the objects has been
computed. Also, the proposed algorithm is evaluated by an objective criterion, the Mean
Alignment Error (MAE) [7]:

MAE(A,B) =
1

M

M
∑

i=1

√

(

xAi − xBi
)2

+
(

yAi − yBi
)2
, (9)

where A =
{(

xAi , y
A
i

)}

i=1..M
and B =

{(

xBi , y
B
i

)}

i=1..M
are the M-point shape instances.

The shape instance A is said to be aligned to instance B if the MEA(A,B) is minimum.
Furthermore, a segmentation procedure has been applied to the input images, since the
proper function of the proposed algorithm demands the existence of an obvious foreground
and background in the testing images. The segmentation was performed either manually
or automatically [3, 26].

a b

c d

Figure 6. Orientation and scaling recovery of an artificial image. (a) The initial
image. The initial image after (b) +30o rotation, (c) +45o rotation, and (d) +60o

rotation. The thickly line represents the principal axes estimated by the proposed
method exploiting a physics-based method [16], while the hairline depicts the principal
axes computed by the PCA algorithm.

As aforementioned, the proposed method was applied to the orientation and scaling re-
covery of an artificially transformed image (Figure 6). Thus, the original image [Figure
6a] was transformed using rotations θ varying from -90o to +90o with no scaling. Trans-
formations in each case follow a uniform distribution, which means that all the integer
rotation angles between -90o and +90o were tested in order not to privilege any angle [Figs.
6b - 6d]. Table 1 presents statistics on the rotation and scaling recovery errors ∆θ and
∆s. The errors ∆θ and ∆s were computed between the acquired and the initial images.
The median, average, maximum and standard deviation values were calculated for all the
errors ∆θ and ∆s computed for each rotation angle between -90o and +90o. As it can
be seen, median and mean scaling and rotation errors are much less than 0.001 and 0.10o

respectively, while the corresponding results of pure PCA and physics-based algorithms are
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Table 1. An artificial image (Figure 6) was artificially rotated using various rotation
parameters. The image was uniformly rotated using angles varying from -90 o to +90o

with no scaling. Different statistics on the derived errors for the rigid transformation
parameters are presented. Rotation errors are expressed in degrees and MAE in
pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting [16]

∆θ 0.09o 1.03o 0.07o 0.13o

∆s 0.0001 0.0009 0.0001 0.0001
MAE 0.21 0.35 0.20 0.06

Proposed
Workspace

exploiting PCA

∆θ 0.72o 5.75o 1.36o 1.89o

∆s 0.0001 0.0018 0.0002 0.0002
MAE 1.60 3.65 0.91 0.84

Physics-based
method [16]

∆θ 0.49o 1.39o 0.52o 0.37o

∆s 0.0049 0.0068 0.0058 0.0011
MAE 0.65 1.54 0.70 0.32

PCA
∆θ 5.68o 8.81o 5.69o 4.80o

∆s 0.0048 0.0072 0.0051 0.0010
MAE 5.24 10.14 4.59 2.20

a little worst. Also maximum errors are less than 0.001 and 1.50o respectively, showing the
robustness of the proposed workspace, a fact that is also enhanced by the MAE, which
illustrates the average pixel restoration error. Hence, exploiting the proposed workspace
for the principal axes determination of an object, one can achieve better results than using
a pure method. In Figure 6 is also depicted the principal axes of the object estimated by
the proposed technique exploiting a physics-based method [16] (thickly line) and the pure
PCA (hairline).

Furthermore, the proposed method was tested using the same image (object), but in
this set of experiments, the rotation angle was set equal to 0o and the scaling factor varied
between 0.25 to 4. Table 2 presents statistics of the rotation and scaling recovery errors,
similar to Table 1. As it can be seen, median and mean scaling and rotation errors are
less than 0.001 and 0.10o respectively. Also maximum errors are less than 0.01 and 0.30o

respectively, showing the effectiveness of the proposed technique, which is also established
byMAE results. Both the afore mentioned experiments show that no particular orientation
or scaling factor has been privileged by the proposed workspace. On the other hand, pure
PCA and physics-based algorithms in both of the experiments achieved worst performance
than when the proposed workspace was utilized.

Moreover, the proposed workspace was applied on another set of experiments with an
artificially transformed image (Figure 6), where the rotation parameter took uniformly
random angles varying from −90o to +90o and the scaling parameter also took uniformly
random values varying from 0.25 to 4. Table 3 presents statistics of the rotation and scaling
recovery errors from this set of experiments. As it can be seen, median and mean scaling
and rotation errors are much less than 0.01 and 0.50o respectively. Also maximum errors are
less than 0.01 and 1.50o respectively, proving that by exploiting the proposed workspace,
an algorithm can recover very accurately the initial configuration (orientation and scaling)
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Table 2. An artificial image (Figure 6) was artificially scaled using various scaling
parameters. The image was uniformly scaled using values varying from 0.25 to 4.0
with no rotation. Different statistics on the derived errors for the rigid transforma-
tion parameters are presented. Rotation errors are expressed in degrees and MAE

in pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting [16]

∆θ 0.03o 0.30o 0.08o 0.09o

∆s 0.0007 0.0018 0.0008 0.0007
MAE 0.27 0.50 0.29 0.10

Proposed
Workspace

exploiting PCA

∆θ 0.64o 6.63o 1.88o 2.23o

∆s 0.0016 0.0020 0.0010 0.0009
MAE 3.40 6.05 3.63 1.16

Physics-based
method [16]

∆θ 0.22o 0.52o 0.21o 0.11o

∆s 0.0088 0.0210 0.0106 0.0058
MAE 0.33 0.61 0.34 0.13

PCA
∆θ 5.56o 8.93o 6.76o 5.96o

∆s 0.0022 0.0107 0.0132 0.0067
MAE 4.05 10.02 5.24 3.76

Table 3. An artificial image (Figure 6) was artificially rotated and scaled using var-
ious rotation and scaling parameters. The image was uniformly randomly rotated
and scaled using angles varying from −90o to +90o and scaling varying from 0.25 to
4. Different statistics on the derived errors for the rigid transformation parameters
are presented. Rotation errors are expressed in degrees and MAE in pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting [16]

∆θ 0.13o 1.02o 0.18o 0.19o

∆s 0.0012 0.0027 0.0012 0.0007
MAE 0.43 1.23 0.57 0.20

Proposed
Workspace

exploiting PCA

∆θ 0.52o 18.67o 4.95o 6.12o

∆s 0.0016 0.0033 0.0014 0.0008
MAE 1.14 15.23 3.98 3.66

Physics-based
method [16]

∆θ 0.18o 1.19o 0.23o 0.19o

∆s 0.0166 0.0201 0.0180 0.0058
MAE 0.57 1.83 0.66 0.21

PCA
∆θ 0.69o 20.67o 5.25o 6.41o

∆s 0.0156 0.0287 0.0171 0.0061
MAE 1.46 20.26 4.54 3.69

of an object.
Moreover, the proposed workspace was applied on a variety of other artificial and natural

images, a sample of which is shown in Figure 7, using akin transformations as in the previous
experiments. Table 4 presents statistics of the rotation and scaling recovery errors from
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a b

c d

Figure 7. Examples of artificial and natural images applied on the proposed algorithm
exploiting physics-based method [16].

Table 4. Synthetic and natural images were artificially rotated and scaled using var-
ious rotation and scaling parameters. The images were uniformly randomly rotated
and scaled using angles varying from −90o to +90o and scaling varying from 0.25 to
4. Different statistics on the derived errors for the rigid transformation parameters
are presented. Rotation errors are expressed in degrees and MAE in pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting [16]

∆θ 0.13o 7.99o 0.33o 1.25o

∆s 0.0007 0.0377 0.0112 0.0558
MAE 0.49 1.81 0.59 0.32

Proposed
Workspace

exploiting PCA

∆θ 0.27o 20.90o 5.15o 7.19o

∆s 0.0008 0.0455 0.0117 0.0581
MAE 0.98 9.62 2.18 1.67

Physics-based
method [16]

∆θ 0.39o 8.48o 0.55o 0.47o

∆s 0.0232 0.0834 0.0248 0.0153
MAE 0.82 6.53 0.83 0.23

PCA
∆θ 1.09o 48.24o 20.38o 28.97o

∆s 0.0306 0.1331 0.0407 0.0282
MAE 1.08 20.26 5.61 5.79

those images similar to Table 1. As it can be seen, median and mean scaling and rotation
errors are about 0.01 and 0.35o respectively. Also maximum errors are about 0.05 and
8.00o respectively. The errors from the results of pure PCA and physics-based algorithms
are worse than exploiting the proposed workspace in all kind of experiments indicating its
efficiency and its reliableness.

Also, Figures 6 and 7 illustrate the principal axes of the objects under consideration
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estimated by the proposed method using the physics-based algorithm [16] (thickly line)
and the pure PCA algorithm (hairline). In some cases, the estimated principal axes of
the objects under consideration, acquired by algorithms which once used the proposed
workspace and then the pure version of the algorithm, were almost the same (Figure 7a
and 7b). However, in most of the cases, the axes differ a lot (Figure 6, 7c and 7d), and the
principal axes computed by algorithms which exploit the introduced workspace seem to be
more reasonable (visually) than the ones derived by the original versions of the algorithms
(PCA, etc).

Table 5. Synthetic and natural images were artificially rotated and scaled using var-
ious rotation and scaling parameters. The images were uniformly randomly rotated
and scaled using angles varying from −90o to +90o and scaling varying from 0.25
to 4. Gaussian noise (0,1) was also added to the objects contour. Different statis-
tics on the derived errors for the rigid transformation parameters are presented.
Rotation errors are expressed in degrees and MAE in pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting [16]

∆θ 0.09o 6.30o 0.22o 0.46o

∆s 0.0010 0.0250 0.0014 0.0061
MAE 0.50 1.44 0.55 0.27

Proposed
Workspace

exploiting PCA

∆θ 2.14o 13.04o 5.20o 5.19o

∆s 0.0010 0.0250 0.0016 0.0062
MAE 3.00 8.63 3.37 1.67

Physics-based
method [16]

∆θ 0.36o 2.82o 0.46o 0.38o

∆s 0.0233 0.0678 0.0244 0.0129
MAE 0.82 6.53 0.83 0.23

PCA
∆θ 9.68o 27.17o 10.25o 22.41o

∆s 0.0567 0.1261 0.0574 0.0305
MAE 13.08 24.52 12.21 5.67

A frequently encountered task in many applications is that the adopted image preprocess-
ing steps (rotations, cropping, interpolation methods, segmentation, etc.) insert a “noise”-
like variation in the image and as a consequence on the contour of the image. Those contour
missing data and outliers make difficult and inaccurate the computation of the principal
axes and the scaling factor of the objects under examination. In the next set of experi-
ments, those outliers and missing data were simulated by adding gaussian noise (0,1) to
the object contour (Figures 8a and 8b) or by cropping it (10% of the contour points) as
shown in Figures 8c and 8d. The error statistics of those experiments are presented in
Tables 5 and 6 respectively. It is noticeable that using the proposed workspace, in both
cases, the median and mean scaling and rotation errors are much less than 0.01 and 0.30o

respectively. Also, maximum errors are about 0.03 and 6.50o respectively. On the other
hand, pure PCA and physics-based algorithms cannot provide better accuracy than the
proposed workspace, which is proved to be robust to contour loss data and outliers.

Finally, in order not to privilege the proposed workspace against pure PCA, a new set
of experiments was performed, where the object contour was pre-smoothed (only in PCA
algorithm) by a median filter of size varying from 3 to 9. The error statistics of the above
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Table 6. Synthetic and natural images were artificially rotated and scaled using var-
ious rotation and scaling parameters. The images were uniformly randomly rotated
and scaled using angles varying from −90o to +90o and scaling varying from 0.25
to 4. The contour of the object under examination was cropped by 10%. Differ-
ent statistics on the derived errors for the rigid transformation parameters are pre-
sented. Rotation errors are expressed in degrees and MAE in pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting [16]

∆θ 0.05o 7.11o 0.19o 0.47o

∆s 0.0009 0.0297 0.0020 0.0010
MAE 0.51 2.44 0.56 0.26

Proposed
Workspace

exploiting PCA

∆θ 0.09o 38.28o 5.42o 12.07o

∆s 0.0009 0.0353 0.0021 0.0058
MAE 3.05 8.65 3.41 1.66

Physics-based
method [16]

∆θ 0.08o 17.21o 3.69o 2.15o

∆s 0.0012 0.0048 0.0062 0.0059
MAE 0.27 5.27 2.45 1.46

PCA
∆θ 1.18o 48.98o 7.32o 5.28o

∆s 0.0406 0.0899 0.0412 0.0216
MAE 2.48 9.73 4.12 4.57

a b

c d

Figure 8. Examples of images (a) and (b) with gaussian noise (0,1) applied on the
object contour, and images (c) and (d) with 10% of their contour points cropped.

mentioned experiment are presented in Table 7. It is remarkable, that whereas the pre-
smoothing of the contour enforces pure PCA to provide akin results to those utilizing the
proposed workspace, the improvement was not large enough to reach the accurate results
of the proposed workspace, which was proved more efficient and reliable than pure PCA
method.
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Table 7. Synthetic and natural images were artificially rotated and scaled using var-
ious rotation and scaling parameters. The images were uniformly randomly rotated
and scaled using angles varying from −90o to +90o and scaling varying from 0.25
to 4. The contour of the object under examination (only in PCA algorithm) was
pre-smoothed by a median filter of size varying from 3 to 9. Different statistics on
the derived errors for the rigid transformation parameters are presented. Rotation
errors are expressed in degrees and MAE in pixels.

median maximum mean s. dev

Proposed
Workspace

exploiting PCA

∆θ 0.06o 3.40o 0.07o 0.20o

∆s 0.0007 0.0059 0.0011 0.0010
MAE 0.50 1.45 0.56 0.27

PCA
∆θ 0.93o 46.39o 18.11o 23.67o

∆s 0.0565 0.1254 0.0564 0.0306
MAE 0.98 10.53 4.86 4.71

4 Conclusion

A novel and robust workspace for the estimation of 2D objects principal axes (orientation)
and scaling factor, was presented. The contour of the object under consideration was
decomposed by an EEMD-like algorithm, which produces the IMFs of the object. The
obtained IMFs provide a very good workspace for well-known algorithms that determine
the principal axes and scaling factor. The proposed workspace was experimentally proven
to produce very low orientation and scaling errors comparing to pure methods for principal
axes and scaling estimation (PCA, etc). The estimated principal axes and scaling factor
were accurate and reasonable.

Furthermore, no particular orientation and scaling value was privileged by the proposed
technique. Also, the usage of the intermediate IMFs of the object contours makes the
technique robust to missing data or outliers (contour noise, cropping, etc.) on the object
contour.

The good quality of the object orientation and scaling determination, as well as, its
outlier resistance makes the workspace a promising tool for the computer vision and pattern
recognition systems.
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