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Abstract 
A new parameter estimation method for linear chirp signal is proposed. This method 

utilizes the Discrete Fractional Fourier Transform (DFRFT) along with Bowtie Chirplet 
Transform to estimate the amplitude and phase parameters of multi-component chirp signals. 
DFRFT is used for estimating amplitude parameter whereas the chirp rate and initial 
frequency are estimated using Chirplet Transform. Performance of the proposed method in 
noise is analyzed by Monte-Carlo simulation for different Signal to Noise Ratio (SNR). Good 
performance was achieved at SNR as low as -10 dB.    
 
1. Introduction 

Polynomial Phase Signals (PPS), especially linear chirp signals are frequently used in 
Mobile communications, Sonar and Synthetic Aperture Radar (SAR) imaging of moving 
targets and geophysics. It is well known that the radar echo of a moving target with constant 
acceleration is a chirp signal. By estimating the chirp rate and initial frequency of the received 
signal, one can achieve valuable information about the velocity and acceleration of the target. 
In such applications the amplitude of the chirp signal is considered as a nuisance parameter 
which does not contain any significant information. A more recent application of linear chirp 
signals have been investigated for speech signals with multi-component linear amplitude 
modulated chirp signals [1]. In that case, the amplitude parameters are as important as the 
chirp rates and initial frequencies of component signals. Hence, techniques that estimate the 
phase parameters (Initial frequency and chirp rate) as well as amplitude parameters accurately 
under noisy environment are needed to be established. 

In the early nineties the time-frequency analysis based on Wigner–Ville (WVD) 
distribution was applied for detection and imaging of moving objects with SAR [2]. But the 
cross-term associated with Wigner distribution hampers the estimation performance in 
extreme noisy conditions. However, the time-frequency analysis is restricted to applications 
where chirp rate is the only parameter of interest. To overcome that, the Radon Transform of 
WVD (RTW or RWT) was proposed by Wood [3].  This method is based on the line integral 
of the time-frequency plane along all possible lines and the outcome of the transform is 
localized maxima on the initial phase-chirp rate plane. The computational complexity of 
RTW was reduced by Wang [4] employing the Radon transform of the ambiguity function 
(2D FFT of WVD), well known as RAT. RAT limits the line integral to lines passing through 
the origin hence losing information about the initial frequency parameter. A sequential 
estimation procedure is proposed by Zhao [5] which employs RAT to estimate chirp rate and 
Fractional Fourier transform (FRFT) [6, 7] to estimate amplitude and initial frequency. But 
this method is restricted to constant amplitude chirps only. In fact conventional FRFT based 
method is useful for mono-component constant amplitude chirp signals. But presence of 
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multi-component signals and high amplitude difference between them make it extremely 
difficult to estimate parameters accurately. Moreover, with those methods the signal has to be 
investigated over the full range of [0, 2π ]. Methods based on wavelet [8, 9] and Discrete 
Polynomial Phase Transform (DPT) are also reported [10]. Some recent works involve 
Discrete chirp Fourier transform for chirp rate estimation [11], and slope calculation of 
ambiguity function for parameter estimation [1] etc.  

In this paper a new sequential estimation method for linear chirp signals are proposed. The 
method is based on Bowtie Chirplet and Discrete Fractional Fourier transforms (DFRFT). 
The Ability of Bowtie Chirplet transform to localize even in high noise condition ensures 
highly accurate estimation of chirp rate and initial frequency. Furthermore the inherent chirp 
compaction property of DFRFT for optimal domain can be effectively used to estimate 
amplitude parameter.  

Rest of the paper is organized as follows. In section 2 Fractional Fourier Transform and 
Time-Frequency (T-F) Analysis are introduced. Various T-F methods are also compared and 
the use of Chirplet transform is justified in the context of this application. In section 3 the 
estimation algorithm is explained in details. In addition analogy between discrete computation 
and continuous results for amplitude estimation is drawn. In section 4 numerical simulations 
are provided. In section 5 performance of the proposed method in presence of noise is 
evaluated. Finally in section 6 the paper is concluded with discussions and guideline for 
future work. 
 
2. Fractional Fourier transform and time-frequency analysis 
 
2.1. Fractional Fourier transform 

Fractional Fourier transform (FRFT) is a generalization of Fourier transform and can be 
viewed as a fractional power of the Fourier operator. The transform also corresponds to a 
rotation in the time frequency plane. 

The concept of Fractional Fourier transform appeared in mathematics as early as 1929. 
Later it was rediscovered in quantum mechanics, optics and signal processing [6]. In 1980 V. 
K. Namias [12] established the fact that any linear transform including Fourier transform can 
be fractionalized, although he was unaware of several previous works. 

The definition of continuous Fractional Fourier Transform (CFRFT) of )(tx of order α is 
defined as [12] 

                                        ∫
∞
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with
π
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=a and αcsc
2
1

=b , n is an positive or negative integer. Here 

)(tδ denotes Dirac-delta function. The Fourier Transform is a special case of FRFT 

for
2
πα = . 

Equation (1) dictates that the transform kernel can be thought as a sequence of following 
operations [6]: 
 

• Multiplication by a chirp in the reference domain. 
• A conventional Fourier transform. 
• Frequency scaling by a factor αcsc  
• Multiplication by a chirp in the transformed domain followed by an amplitude scaling. 

Fractional Fourier transform is an orthogonal decomposition of signal into linear chirps 
having fixed sweep rate αcot

2
1 , distinguished by a time shift and phase factor such that [6] 

)0,csc(),( ααα utkutk −= .The chirp decomposition of signals gives FRFT an edge over 
Fourier Transform for analyzing linear chirp signals, which are extensively used in radar and 
sonar technology as well as geophysics. The continuous FRFT of a chirp signal 
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So, CFRFT of chirp for c±=αcot  is a delta function.  

Consider the chirp signal  ))665.1(
2

exp()( 2 +−−= tt
j

tx                                                           (3) 

The chirp )(tx has sweep rate 5.1−=c and initial frequency 3=cω . CFRFT of this chirp is 

shown in Figure 1 for 0=α (time domain), 
4
πα = (fractional domain), 

2
πα = (Fourier 

domain) and optimal domain ( 5.1cot =α ). The delta peak for the optimal case is seen at 
83205.0=u as expected from equation (2).  

The Discrete Fractional Fourier transform (DFRFT) can be defined by discretizing CFRFT 
with time and fractional domain sampling rate T  and U  respectively and imposing following 
constraint on them [13, 14] 
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where α  is the transform order, T  and U are the time and fractional domain sampling rate 
respectively and n and k denotes time and fractional domain sample numbers respectively. 

DFRFT defined in equation (5) produces results similar to CFRFT for discrete chirp 
signals for optimal fractional order. This property is useful for the algorithm described 
in this paper. The formulation for parameter estimation is provided in later sections. 
Also an analogy between DFRFT and CFRFT results for chirp signals is also drawn. 
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Figure 1. Continuous Fractional Fourier transforms of )(tx  

 
2.2. Time-Frequency analysis 

Time-Frequency (T-F) analysis refers to the distribution of the energy of a signal 
simultaneously in time and frequency. The time domain and frequency domain representation 
of signals are simply subspace of T-F representations. 

The T-F analysis was studied thoroughly by D. Gabor in his paper Theory of 
Communication [15]. The main concept of Gabor analysis was to analyze the signal 
with windowed sinusoids instead of infinity duration sinusoids. The result was Short-
Term Fourier Transform (STFT) defined as 

 
                                             dtetgtxtxSTFT tj∫

∞

∞−

−−= ωττω )()(),)](([                              (6) 

This leads to a tiling of the T-F plane with finite duration (both in time and 
frequency) “so called” Gabor atoms. Another time frequency representation evolved 
later which is called wavelet transform [16-19]. Basically it is a time scale 
representation where the signal is analysed in different scales. The wavelets are 
produced by a family of translates and dilates of a primitive “Mother Wavelet”. The 
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continuous Wavelet transform has been used for T-F analysis in place of STFT for 
improved resolution. 

Another possible tiling of T-F plane is with atoms which are varying frequency with 
time. These atoms are short duration chirp signals linearly sweeping their frequency 
with time. Such T-F atoms give rise to Chirplet transform. An example of such tiling is 
given in Figure 3. Haykin and Mann introduced the Chirplet transform [20] as a 
generalization of Wavelet transform in a loose sense where the chirp rate acts as an 
additional parameter. They proposed a T-F-C volume which constitutes both the Gabor 
and Wavelet essence with a tiling of chirp like atom. The TFC volume looks like Figure 
4. 

They further generalized with scaling (dilation) and time-shear and gave rise to a 5-D 
parameter domain called Chirplet Transform. The Chirplet Transform is defined as [20] the 
inner product of the signal with a translated ( ct ), dilated ( tΔ ), time (d) and frequency (c) 
sheared short duration chirp signal. 
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Later they proposed several subspace transform from the 5D parameter domain. One of 
them is Bowtie Chirplet Transform which is used in this paper for chirp parameter estimation. 
 

    
Figure 2. Tiling of T-F plane by Gabor atom; Left: longer duration, shorter 

bandwidth; Right: shorter duration, longer bandwidth 

They further proposed several subspace transform from the 5D parameter domain. One of 
them is Bowtie Chirplet Transform which is used in this paper for chirp parameter estimation. 
 
2.3. Bowtie Chirplet transform  

The Bowtie Chirplet Transform of a signal )(tx is defined by setting 1=Δt and d=0. 
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                                          dtettgetxctB tj
c

ttcj
ccx c

c ωω −−−∞
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−= ∫ )()(),,(

2)(
2
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                  (8) 

where ct , cω and c denotes time lag, frequency and chirping (shear) parameters respectively 
and )(tg is the window function. It is interesting to notice that equation (8) is an extension of 
Short Time Fourier Transform (STFT) and represents a 1D to 3D mapping of a signal. The 
name Bowtie came from the shape of the T-F distribution. 

 

 
Figure 3. Alternate tiling of T-F plane 

 

 
Figure 4. T-F-C volume 

 
2.4 Time-Frequency analysis for chirp rate estimation 

Several Time-Frequency techniques, like WVD and Radon Wigner transform have been 
used for time-frequency analysis of chirp signals. 
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Wigner-Ville distribution is a quadratic distribution function that has been used in the field 
radar and sonar signal processing for chirp rate estimation. The Wigner-Ville distribution of a 
signal )(tx is defines as 

                                            τττ
π

ω ωτ detxtxttxW j−
∞

∞−
−+= ∫ )

2
(*)

2
(

2
1),)](([                            (9) 

where * denotes complex conjugate operation. It represents the time-frequency ),( ωt  
distribution of a signal. The time-frequency analysis of a linear chirp is a straight line with 

slope equal to chirp rate. WVD of the )
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Figure 5(a) shows the WVD for the chirp signal of equation (3) in presence of noise 
(SNR=-10 dB) and 5(b) schematically shows how sweep rate and initial frequency can be 
estimated from WVD. 

In presence of high noise WVD of chirp is very hard to detect form the noisy 
background even for a single component as seen in Figure 5(a). Moreover for multi-
component signals presence of cross terms makes it even harder. To overcome this 
problem Radon Transform of WVD (RTW) was proposed to determine chirp rate. 

The Radon transform [21] of a 2D function ),( yxf  is defined as 

                                   ∫ ∫
∞
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−−= dydxyxyxfyxfR )sincos(),()],([, θθρδθρ                    (11) 

where ],[ ∞−∞∈ρ  and ]2,0[ πθ ∈ .  This transform is simply line integral of the 2D function 
along different directions. The argument inside the delta function indicates that the integral is 
taken along straight lines with parameters θ and ρ . 

Radon transform of the WVD of chirp is 

                
2

csccot
2

cot
sin

sincos
csc)(

sin
1

)csccot,(
sin

1)sincos(),(),(

a
cc

dtcta

dtttWdtdttW

t
⎟
⎠
⎞

⎜
⎝
⎛

+
−

+
=−−=

+−=−−=ℜ

∫

∫∫ ∫

∞+

∞− +−=

+∞

∞−

+∞

∞−

+∞

∞−

θ
θγρ

θθ
θγωδ

θ

θρθ
θ

ωθωθρδωθρ

θρθω

                           

                                                                                                                                           (12) 

Equation (12) indicates that RTW term will have localized peak at 
( c1cot−−=θ , θγρ eccos= ). The integral terms along other lines will be much smaller than 
this and therefore skipped in this discussion. 

Figure 6 shows the RTW for the chirp signal of equation (3). The θ - ρ  parameter domain 
can estimate chirp rate and initial frequency. However, RTW has very high computational 
complexity and a major draw back is the presence of a large peak at ( o0=θ , 0=ρ ) as evident 
from equation (12) which may cause problem in detection for multi-component signals. Also 
in some cases the localized peaks tend to deviate from the actual position because of digital 



International Journal of Signal Processing, Image Processing and Pattern 

Vol. 2, No.1, March, 2009 

 

 

96 

approximations. Chirp peak occurs at ( o13.59−=θ , 893.2=ρ ) which corresponds to 
estimated 673.1−=c and 893.2=cω . So a large estimation error is produced for chirp rate in 
this case. 
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Figure 5. (a)WVD of )(tx  (b) Schematic diagram for sweep rate and initial 
frequency detection 

 

Considering all these factors, in this paper Bowtie chirplet transform is proposed for 
chirp rate and initial frequency estimation of chirp signal from the chirp rate Vs time 
lag plane. The peaks can be well localized on the 2D parameter space as shown in 

Figure 7 for a redefined form of our analyzing signal ))2(5.1
2

exp()( 2−−= tjtx . In this 

case 2=ct is the time lag which is related to cω as cc tc=ω . From the peak location 
5313.1−=c and 0167.3=cω which is more accurate than RTW. Another advantage of 

Bowtie Chirplet transform is its lesser computational complexity than RTW. Therefore 
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in this paper Bowtie Chirplet transform is applied for chirp rate and initial frequency 
estimation and from that result amplitude is estimated from DFRFT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. RTW of )(tx  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Bowtie Chirplet transform of )(tx  
 
 
3. Proposed estimation method 
 
3.1. Signal model 

In this paper the signal is modeled as following. 

                                                          )()()(
1

ttstx
M

i
i μ+= ∑
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                                              (13) 

where )(tsi is chirp signal defined as 
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And )(kUS i

α will be denoted as DFRFT of )(tsi . 

Here, )( tμ is zero mean Gaussian noise with known variance μσ . ia  is the amplitude 

parameters and  ic , and iτ  are chirp rate and time lag respectively. 
 
3.2. Phase parameters estimation using Bowtie Chirplet transform 

For a signal described as (13) we can write  
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That means for such signals the definition is nothing but the Fourier transform of the complex 
conjugate of arbitrary window function. With simple Fourier properties it can be showed that   
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where )( cG ω  is the Fourier transform of )(tg , and the magnitude response will be obviously 
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Now irrespective of the type of window function its magnitude spectrum will be maximum 
at 0=cω . Thus for this special type of signal we can modify (or rather simplify) the 
definition as  
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This can be further re-written as  
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Equation (14d) is in effect the cross-correlation between )(tx and 
2

2)()(~ tcj
etgtg
−

= . The 
cross-correlation can be efficiently performed taking c as parameter using Fast Fourier 
Transform (FFT) algorithm and phase parameters can be estimated from the fact that peak 
will be observed on the ( ctc , ) plane at ( ii c,τ ). 
 
3.3. Amplitude parameter estimation using Discrete Fractional Fourier Transform 
(DFRFT)  

Two basic theorems are proposed in this section for estimating amplitude parameter using 
DFRFT. Also an analogy with CFRFT is provided. 
 

3.3.1. Theorem 1 

For a discrete signal, ))(
2

exp()( 2fnTcjAnTx −= , the magnitude DFRFT spectrum will be, 
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delta peak will be visible at 0kk = for optimal angle αcot−=c . The inequality indicates that 
the delta peak will be largest peak in Fractional Fourier domain. 

Proof: Following the definition of DFRFT, 
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Since 0kk − is an integer, 1=pa for all integers p  
Thus 0)( =kUXα  

Case 3: αcot−≠c  

Again starting from equation (16b) 
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3.3.2. Theorem 2 

For a discrete signal, ))(
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exp()( 2fnTcjAnTx −= , the magnitude DFRFT spectrum will be, 
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                                  0k̂  is the nearest possible integer of 0k  
                                  ∈  is a small real number 

Theorem 2 states that for a chirp signal )(nTx , if the term 02
12 kcfTN

=
+
π

is non-integer 

then, a peak, corresponding to sinc function main lobe, will be visible at nearest 
integer 0k̂k = for optimal angle αcot−=c . However for other 0k̂k ≠ the side lobes will be 
visible. 
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This Theorem is indeed important when cfTN
π2

12 + is not an integer. In that case still a 

Peak is produced at the nearest integer index of DFRFT ( 0k̂ ) and amplitude can be located 
according to equation (17). 

  Proof:  Starting from equation (16b) 
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Similar to case 2 Theorem 1 it can be shown, 
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For 0∈→ Theorem 2 converges to Theorem 1 
 

Therefore theorem 1 & 2 indicates that if the chirp rate and time lag (as well as initial 
frequency) Parameters are already known DFRFT can estimate amplitude parameter of 

)(tsi at optimal angle using following magnitude spectra relation  
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3.3.3. Analogy between CFRFT and DFRFT 
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With some change of variable and further simplifying, 
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Now using Fresnel Integral,  
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Thus CFRT for windowed chirp signals with optimal angle produce sinc function main 

lobe depending on the initial frequency. This property is similar to the DFRFT case. 
 
4. Simulation results 

The proposed estimation method is investigated with numerical simulation. The test signal 
is composed of four linear chirp signals. The parameters are: 

 
 54.2,7.4,3)1( 111 === ac τ             11.3,64.2,3.3)2( 222 =−=−= ac τ  

41.2,0,4.1)3( 333 === ac τ             62.4,70.4,7.5)4( 244 =−== ac τ  
 

Rectangular window )
2001

()( nTrectnw =  is chosen with T=0.01.Figure 8 shows the 2D 

Chirplet Transform result ( c vs. ct ) for estimation of c andτ at SNR=-10 dB. The peaks are 
found at (3,4.71), (-3.2, -2.65), (1.38,0) and (5.7,-4.69). 
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DFRFT results for 3cot
1−

−=α , 2.3cot
1−

=α , 4.1cot
1−

−=α  and 7.5cot
1−

−=α are 
shown in Figure 9.  The values of ai estimated from equation (19) are 2.7069, 2.993 
respectively. Figure 10 presents the actual noisy and estimated signal for this noise level. 
 
5. Performance analysis and discussion 

To evaluate the performance of the system under noise, Monte-Carlo simulations are 
performed. Components 1 & 2 are used from previous section. 

The estimation values are computed 100 times for each of ia for each case of SNR=-10 
dB,-8 dB, -6dB,-4dB,-2 dB, 0dB, 2 dB, 4dB, 6 dB, 8 dB and 10 dB. The accuracy of 
estimation is measured as Mean Squared Error (MSE), 
                                        dBpp

M
MSE
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i ])ˆ(1[log10

2

10
1
∑
=

−=                            (21) 

where ip̂  denote the estimated value of parameter p  at the thi  computation and M  is the 
number of Monte-Carlo computation. Figure 11 shows the MSE of estimated amplitude 
parameters for various SNR. The estimated values for chirp rate and initial frequency 
parameters are constant over this range of SNR and hence are not shown.  
 
6. Conclusions 

A sequential estimation method combining Bowtie Chirplet Transform and Discrete 
Fractional Fourier transform (DFRFT) is proposed. The former is capable of estimating chirp 
rate and initial frequency in very low SNR. The DFRFT enables to compute the amplitude 
parameter. The proposed method is well suited for applications involving multiple-parameter 
estimation of chirp signals. The algorithm is tested for several noise levels with Monte-Carlo 
simulation. However, Cramer-Rao lower bound (CRB) for the estimation is required to be 
derived and compared with Monte-Carlo simulation result. Also similar estimation method 
for linear amplitude modulated chirp signals can be investigated. Effectiveness of this 
proposed method for real world application (speech modeling and synthesis, for example) is 
yet to be performed and therefore attributed to future work. 
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Figure 8. Bowtie Chirplet transform of the test signal. Values are mapped onto 

the range 0 to 255 
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Figure 9. DFRFT Magnitude of test signal for 3cot
1−

−=α , 2.3cot
1−

=α , 

4.1cot
1−

−=α  and 7.5cot
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−=α  
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Figure 10. Real parts of the simulated chirp signal and reconstructed chirp signal on 

the same plot 
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Figure 11. MSE vs. SNR plot for parameter estimation of the test signal 
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