
International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014), pp.103-114

http://dx.doi.org/10.14257/ijseia.2014.8.4.12

ISSN: 1738-9984 IJSEIA
Copyright ⓒ 2014 SERSC

The Usefulness of Relational Concept Analysis (RCA) for

Remodularization of a Software Architecture Composed of Classes

and Packages

Lala Madiha Hakik
1
 and Rachid El Harti

1

1
Faculty of Science and Techniques, University Hassan I, BP 577, Settat, Morocco.

hakik.madiha@gmail.com, relharti@gmail.com

Abstract

In a previous study we proceeded to the remodularization architecture based on classes

and packages using the Formal Concept Analysis (FCA) [2, 13, 14], we then got two possible

remodularized architectures and we explored the issue of redistributing classes of a package

to other packages, we used an approach based on Oriented Graph to determine the packages

that receive the redistributed classes and we evaluated the quality of a remodularized

software architecture by metrics[1].

This paper presents the usefulness of relational concept analysis (RCA) for

remodularization of a software architecture composed of classes and packages and we

evaluate the quality of the result by metrics of coupling and cohesion.

Keywords: Remodularization, Software architecture, Relational Concept Analysis (RCA),

Metrics of Coupling and Cohesion.

1. Introduction

Great software systems based on approaches, the object consist of classes grouped into

packages, forming a modular structure. The dependency relationships between classes in the

same package (internal dependencies), and between classes of different packages (external

dependencies generate complexity making it difficult to understand and maintain the system.

In addition, the modular structure tends to degrade over time, making necessary an expert

intervention for modernization [1].

Many researchers make proposals on this subject using technical visualization, algorithms

of remodularization, Exploring the Redistribution Classes of a Package with an Approach

Based on Formal Concept Analysis. [13, 14] or using an approach based on Oriented Graph

based on the technique of shortest path [1].

In this paper, we study a particular declination, cf. the problem presented by H. Abdeen et

al., [2, 1], which is about the redistribution of classes from one system to existing packages.

Namely, we consider in this paper more precisely the redistribution of classes in a package to

other packages [1].

This package may be a very small and in fact we want to balance the sizes of packages in

the system, or it was artificially created to contain added classes to the system and the

designer considers that there is no consistency semantics [1].

We explore a solution using relational concept analysis (RCA) and illustrate our proposal

with a theoretical example.

mailto:hakik.madiha@gmail.com
mailto:relharti@gmail.com

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

104 Copyright ⓒ 2014 SERSC

Section 2 presents our example, then we describe the approach in Section 3. Section 4

presents validation metrics of cohesion and coupling measure and we discuss our main

results. Related work is presented in Section 5, and then we conclude in Section 6.

2. Illustration

This section presents the problem of software architectures remodularization on an

example. We will use the architecture shown in Figure 1 consists of five packages A, B, C, D

and E. Packages A, B, C, D, E are expected to contain more classes that are not shown for

simplicity. Dependencies linking classes: they correspond for example to call a method or use

of a type. External dependency relationships link classes of package E to classes of other

packages. Internal dependency relationships connect classes E between. Internal

dependencies of A, B, C and D are not presented.

Figure 1. An Initial Architecture Composed of Classes and Packages [12, 13].

We are interested in the redistribution of classes E to other packages with an exploratory

method, whose proposals for redistribution are then presented to an expert. These proposals

are based on the idea that the expert, while checking the semantic classes, could search for the

increase of the cohesion (within the meaning of the coupling of classes in a package) and

reduce the coupling between classes in different packages. To do this, we believe it is

appropriate to encourage the following two trends [12, 13]:

 - Classes in a package attract them to classes of E,

 - If classes of E are interconnected, it is better to redistribute in the same package.

We believe that the Relational Concept Analysis (RCA) can bring interesting ways to solve

this problem because this technical method allows the group to connect classes identically.

We are looking to propose a solution to an expert.

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 105

3. Proposed Approach

The Relational Concept Analysis (RCA¹) is a technical relational data analysis whose

objects are described by attributes and relations with other objects. The RCA is used in

software engineering for solving several problems.

For redistributing of classes of package E to the packages A, B, C, D of the software

architecture for remodularization, our exploration was carried following the steps below:

Step1: Relational context family¹

It's a simple entity relationship mode to introduce RCA.

¹http://www.lgi2p.ema.fr/~urtado/Slides/Huchard_partie1_14_02_2013.pdf

 Object- attribute contexts:

For our case, we have only the object- attribute contexts are used to build the foundation of

the concept lattice family (see Figure 4) result of grouping two lattices T(C1) (Figure 2) and

T(C2) (Figure 3).

Configurations In the context of our problem, we studied six different configurations.

We present two of them.

The configuration with RCA is to define a formal context C: the set O of entities studied

(or formal objects) Set A of characteristics (or formal attributes) and the relationship

R ⊆ O × A.

The first formal context associates a class c of a package E to the packages that access to

this class c (see Figure 2, left panel).

Context (formal context C1).

- O1 is the set of classes of E in relation to the outside.

- A1 is the set of packages A, B, C, D (which has a relation to a class of E).

- R1 is the relation "is a target for external access".

- (e, p) ∈ R1 if e is an access target from p, for example (E2, A) ∈ R1.

Figure 2. Formal Context C1 and Lttice T(C1)
–Architecture 1-[12, 13]

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

106 Copyright ⓒ 2014 SERSC

The second formal context can refine the results and redistribute the same package into two

classes that are interconnected in E). It combines a class of package E another class that is

connected (see Figure 3, left panel).

Context (formal context C5).

- O5 is the set of classes of E in relation to the outside.

- A5 = O5: E classes in relation to the outside.

- R5 is the relation "is connected to".

- (e1, e2) ∈ R5 if there is an arrow e1 to e2 or e1 to e2, for example (E4, E5) and (E5, E4)

belong to R2.

Figure 3. Formal Context C2 and Lattice T(C2)
–Architecture 1-

Figure 4. Concept Lattice Family Grouping Two Lattices T(C1)
(Figure 2) and T(C2) (Figure 3)

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 107

Step 2: RCA. Introducing relations as relational attributes

Figure 5. Relational Concept Family with Relation: Target Package of classes
of Package E Interconnected

Relations between classes interconnected of package E and the target packages (see

figure5), allow us in an exploration for the redistribution of classes of package E to know

the exact destination of their specific assignment and gives rise to a new context producing

a new concept lattice showing the execution of the redistribution of classes of package E(

see figure 6).

Step 3: RCA. Enriching Relations

The relationship enrichment object of step 2 is done by replacing the objects columns by

concepts lattice associated with the target context; the relationship is established by an

operator of scaling¹ (see Figure 6).

The New formal context associates a class c of a package E interconnected to the packages

that access to this class c (see Figure 6, left panel).

New context (formal context C3).

- O3 is the set of classes of E in relation of the set of interconnected classes of E.

- A3 is the concept of T(C1) in relation of the set of interconnected classes of E.

- R3 is the relation "is a target package of classes of package E interconnected".

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

108 Copyright ⓒ 2014 SERSC

Figure 6. New Formal context C3 and new lattice T(C3) Result of the
Relationship Enrichment

The concept lattice is the classification structures that expose concepts (their nodes) and

link by specialization.

For example, the concept lattice T(C1) associated with context C1 (see Figure 2, right),

contains eight concepts outside the top and bottom. The shaded part of the labels (upper part)

corresponds to the simple intension of the concept, while the white portion of the label (lower

part) is a simplified extension. Labeled extensions are inherited backwards in the lattice while

labels intensions are inherited in descending.

For example the lattice T (C1) contains the concepts:

- ({E6, E7, E8}, {B}) at the top left, simplified in ({}, {B})

- ({E11, E12, E13}, {A, C}) in the middle at the bottom, simplified ({E11, E12, E13},{})

Example of exploration The exploration is to navigate the lattice T (C3) to identify

opportunities for redistribution of classes and submit to an expert. We partially detail an

example of analysis to explain the principle.

The lattice T (C3) can be divided into three large blocks in which we will choose concepts.

1. Analysis of the concept ({E5, E7}, {{E1, E2, E4}, {A}}) the right of T (C3): the

expert can choose to put five classes E1, E2, E4, E5, E7 in A.

2. Analysis of the concept ({E6, E7, E8, E11, E14} {{E9, E10, E14}, {C}}) the left of

T (C3): eight classes are in full extension of the concept of intension {C}, the expert

can still choose to put them in C. The subsystem {E6, E7, E8, E11, E14, E9, E10,

E14} can be put into C. Here we note that the class E7 can be assigned to package A

or C and since it is interconnected to four classes that go to A and interconnected to

eight classes for C, so it will go to the dominant package C.

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 109

3. Analysis of the concept ({E2}, {{E3}, {A, D}}) the right of T (C3): two classes are

in full extension of the concept of intension { A, D}, the expert can choose to put

two classes E2, E3 in package A or D and since E2 is interconnected to four classes

that go to A and interconnected to one classe E3 that go to A or D, so E2 will go to

the dominant package A. In this case the class E3 follow the class E2 also in package

A to stay together.

4. Analysis of the concept ({E12, E13}, {{E11, E12, E13}, {A, C}}) the left of T (C3):

three classes are in full extension of the concept of intension { A, C}, the expert can

choose to put three classes E11, E12, E13 in package A or C and since E11 is

interconnected to seven classes that go to C and interconnected to two classes E12

and E13 that go to A or C, so E11 will go to the dominant package C. In this case the

classes E12 and E13 follow the class E11 also in package C to stay together.

Figure 7 shows one possible result of remodularized software architecture. The classes of

package E deleted were distributed.

Figure 7. One Possible Result of Remodularized Software Architecture -1-

4. Results and Discuss

4.1. Validation Metrics

For validatiton of metrics cohesion and coupling, our calculations were based on Figures 1

and 7 with an architecture comprising 5 packages A, B, C, D and E by redistribution classes

of package E (Figure 1) using The Relational Concept Analysis (RCA¹), which resulted one

possible remodularized architecture (Figure 7). The package E is removed during this

operation.

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

110 Copyright ⓒ 2014 SERSC

A. Cohesion Metics

Table 1. Cohesion metrics: Index of Package Goal Focus and Index of Package
Services Cohesion

Figure 8. Graphic Representation of Cohesion Metrics: Index of Package Goal
Focus PF and Index of Package Services Cohesion IPSC (Table 1)

The Cohesion metrics: Index of Package Goal Focus (PF) and Index of Package Services

Cohesion (IPSC) take their values from 0 to 1, where 1 is the optimal value and 0 is the

wrong value.

Figure 8 gives the values of indices PF and IPSC for:

- Package E of Original Architecture 1 whose indexes are bad values because they are

lower than 1.

- Packages A and C of remodularized architecture whose the index IPSC is optimal

value 1 therefore very good.

 PF IPSC
Package E of the original architecture 1 0,5 0,0116

Package A of the original architecture 1 0 1

Package C of the original architecture 1 0 1

Package A of the remodularization 1 0,25 1

Package C of the remodularization 1 0,46 1

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 111

B. Coupling metrics

Table 2. Coupling metrics: Index of Inter-Package Interaction (IIPU and IIPE)

 IIPU IIPE

The original architecture 1 0,588 0,333

Architecture of the remodularization 1 0,811 1

The coupling metrics: Index of Inter-Package Interaction (IIPU and IIPE) object of the

Figure 9, it is observed an improvement indexes IIPU and IIPE at remodularization 1

architecture compared to indexes of the original architecture 1 therefore a trend to optimality

Figure 9. Graphic Representation of Coupling Metrics: Index of Inter-Package
IIPU and IIPE (Table 2)

Table 3. Coupling Metrics: Index of Package Changing Impact IPCI; Index of
Package Communications Diversion (IIPUD and IIPED)

 IPCI IIPUD IIPED

Package E of the original architecture

1

0 0,271 1

Package A of the original architecture

1

1 1 1

Package B of the original architecture

1

1 1 1

Package C of the original architecture

1

1 1 1

Package D of the original architecture

1

1 1 1

The original architecture 1 0,8 0,854 1

Package A of the remodularization 1 0 0,38 0,38

Package B of the remodularization 1 1 0,583 0,583

Package C of the remodularization 1 1 0,541 0,541

Package D of the remodularization 1 1 1 1

Remodularization 1 0,75 0,626 0,626

Concerning the coupling metrics: Index of Package changing Impact (IPCI) and Index of

Package Communications Diversion (IIPUD and IIPED) presented in Figure 10, the results

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

112 Copyright ⓒ 2014 SERSC

obtained for remodularization 1 approximate from those of the original architecture 1 extend

to a higher interesting value 0.626.

Figure 10. Graphic Representation of Coupling Metrics: Index of Package
Changing Impact; Index of Package Communications Diversion (Table 3)

The results obtained at the level of the cohesion for the remodularized architecture 1

provides an optimum value 1 compared to the original architecture 1.

The results of the coupling have an improvement at the level of remodularized architecture

1 compared to the original architecture 1.

5. Related Work

Different automated approaches have been proposed to restructure object systems. We cite

three: the clustering algorithms, algorithms based on meta -heuristics and those based on the

FCA [6]. The first aim to restructure system by the distribution of some elements (e.g.,

classes, methods, attributes) in groups such that the elements of a group are more similar to

each other with elements of other groups [3, 7, 5]. Approaches to restructuring based on meta-

heuristic algorithms [9, 8] are generally iterative stochastic algorithms, progressing towards a

global optimum of a function by evaluating a certain objective function (eg characteristics or

quality metrics). Finally, the approaches based on FCA [10, 12] provide an algebraic

derivation of hierarchies of abstractions from all entities of a system. Reference [4] presents a

general approach for the application of the FCA in the field of object-oriented software

reengineering. In previous work, we added the dimension of exploration using the FCA[13,

14].

Last work we explored the issue of redistributing classes of a package to other packages.

We use an approach based on Oriented Graph to determine the packages that receive the

redistributed classes and we have evaluate the quality of a remodularized Software

Architecture by metrics for measuring Coupling and Cohesion of a Package [1].

In this paper use an approach based on relational concept analysis (RCA) for

remodularization of a software architecture composed of classes and packages and we

evaluate the quality of the result by metrics of coupling and cohesion.

A large part of previous works related to oriented software metrics has focused on the issue

of characterizing the class design, either looking internal complexity or relationship between

a given class and other classes [1, 16-26].

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 113

In the literature, there is also a body of work that focus on object oriented metrics from the

standpoint of their correlation with software changeability [16, 27], or from the standpoint of

their ability to predicate softwair maintenability [1, 16, 28]. Other reasearchers argue that the

measures resulted by the cohesion and coupling metrics of the previous works are open to

interpretation [1, 16, 28].

In general, there are few metrics in the the literature devoted to packages. Our cohesion

and coupling metrics we provide in this work are similar to the metrics provided by Ducasse

[1, 16].

6. Conclusion

In this article we explore the issue of redistributing classes of a package to other packages.

We use an approach based on relational concept analysis (RCA) to determine the packages

that receive the redistributed classes, and we have evaluate the quality of a remodularized

software architecture by metrics for measuring coupling and cohesion of a package. The

results have an improvement at the level of remodularized architecture.

References

[1] L. M. Hakik and R. El harti, “Technique Of Redistribution Classes Of A Package With An Approach Based

On Oriented Graph And Evaluation Quality of A Remodularized Software Architecture”, International

Journal of Innovative Research in Science, Engineering and Technology.ISSN:2319-8753, vol. 3, no. 1,

(2014) January.

[2] L. M. Hakik and R. El Harti, “Measuring Coupling and Cohesion to Evaluate the Quality of a Remodularized

Software Architecture Result of an Approach Based on Formal Concept Analysis”, IJCSNS International

Journal of Computer Science and Network Security, Journal ISSN: 1738-7906. vol. 14, no. 1, (2014) January,

pp. 11-16.

[3] F. B. Abreu, G. Pereira and P. Sousa, “A coupling-guided cluster analysis approach to reengineer the

modularity of object-oriented systems”, Proceeding of the confeence on Software Maintenance and

Reengineering. CSMR ‘OO, pages 13-, Washington, DC, USA, 2000. IEEE Compter Society Press.

[4] G. Arévalo, S. Ducass and O. Nierstrasz, “Lessons leaned in appling fomal concept analysis to reverse

engineering”, Proceeding of the Third international conference on Fomal Concept Analysis, ICFCA’05,

Berlin. Heidelberg, Spinge-Velag, (2005), pp. 95-112.

[5] M. Bauer and M. Trifu, “Architecture-aware adaptive clustering of oo systems”, Poceedings of the Eighth

Euromicro Working Conference on Software Maintenance and Reengineering (CSMR ‘O4), CSMR ‘O4,

pages 3-, Washington, DC, USA, 2004. IEEE Compter Society.

[6] B. Ganter and R. Wille, “Formal Concept Analysis. Mathematical Fondations”, Spinge, (1999).

[7] B. S. Mitchell and S. Mancoridis, “Compaing the decompositions produced by software clustering algoithms

using similarity measurements”, ICSM, (2001), pp. 744-753.

[8] M. O.’Keeffe and M. I. Cinneide, “Seach-based refactoring fo software maintenance”, J. Syst. Softw., vol. 81,

no. 4, (2008) April, pp. 502-216.

[9] O. Seng, J. Stammel and D. Burkhart, “Search- based determination of refactorings for improving the class

structure of object-oriented systems”, Mike Cattolico, edito. GECCO, ACM, (2006), pp. pp. 1909-1916.

[10] G. Snelting, “Software reengineering based on concept lattices”, CSMR, (2000), pp. 3-10.

[11] T. Tilley, R. Cole, P. Becker and P. W. Eklund, “A survey of formal concept analysis support for software

engineering activities”, Int. Conf. Fomal Concept Analysis (ICFCA 2005), (2005), pp. 250-271.

[12] P. Tonella, “Concept analysis for module restructuring”, IEEE Trans. Software Eng.. vol. 27, no. 4, (2001),

pp. 351-363.

[13] L. M. Hakik, M. Huchard, R. El Harti and A. D. Seriai, “Exploration de la redistribution des classes d'un

package par des techniques d'Analyse Formelle de Concepts”, The first conference in software engineering

(CIEL 2012), France, (2012).

[14] L. M. Hakik and R. El Harti, “Exploring the Redistribution Classes of a Package with an Approach Based on

Formal Concept Analysis”, International Journal of Engineering Research & Technology (IJERT), ISSN:

2278-0181, www.ijert.org, vol. 2, no. 12, (2013) December.

[15] A. Anwar, “Formalisation par une approche IDM de la composition de modeles dans le profil VUML”,

Thesis. Toulouse University, (2009).

http://www.ijert.org/

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

114 Copyright ⓒ 2014 SERSC

[16] S. Ducasse, N. Anquetil, M. U. Bhatti and A. C. Hora, “Software metrics for package remodularisation”,

Research report, (2011) November.

[17] S. R. Chidamber and C. F .Kemer, “A metrics suit for object oriented design”, IEEETSE, vol. 20, (1994), pp.

476-493.

[18] F. B. Abreu and R. Carapuca, “Candidate metrics for objected-oriented software within a taxonomy

framework”, Journal of Sys, Sof., vol. 26, (1994), pp. 87-96.

[19] W. Li and S. Henry, “Objected-oriented metrics that predict maintainability”, Journal of Sys, Sof., vol. 23,

(1993), pp. 111-112.

[20] W. Li, “Another metric suit for object oriented programming”, Journal of Sys, Sof., vol. 44, (1998), pp. 155-

162.

[21] B. H. Selers, “Object-Oriented Metrics: Measures of Complexity”, Prentice-Hall, (1996).

[22] J. M. Bieman and B. K. Kang, “Cohesion and reuse in an object-oriented system”, ACM Symposium on

Software Reusability, (1995) April.

[23] J. M. Bieman and B. K. Kang, “Measuring design-level cohesion”, IEEETSE, vol. 24, no. 2, (1998) February,

pp. 111-124.

[24] L. C. Briand, S. Morasca and V. R. Basili, “Defining and validation measures for object-based high-level

design”, IEEE TSE, (1999), pp. 722-743.

[25] L. C. Briand, J. W. Daly and J. Wust, “A Unified Framework for Cohesion Measurement in Objected-

Oriented Systems”, Empirical Software Engineering”, An International Journal, vol. 3, no. 1, (1998), pp. 65-

117.

[26] L. C. Briand, J. W. Daly and J. Wust, “A Unified Framework for Coupling Measurement in Objected-

Oriented Systems, IEEETSE, vol. 25, no. 1, (1999), pp. 91-121.

[27] R. K. Bandi, V. K. Vaishnavi and D. E. Tuk, “Predicting maintenance performance using object- oriented

design complexity metrics”, IEEETSE, vol. 29, (2003), pp. 77-87.

[28] H. Kabaili, R. K. Keller and F. Lustman, “Cohesion as changeability indicator in object- oriented systems”,

In Fifth Europ. Conf, on Sof. Maintenance and Reengineering. CSMR 01, Washington, DC, USA, IEEE

Computer Society, (2001), pp. 39-46.

[29] R. K. Bandi, V. K. Vaishnavi and D. E. Tuk, “Predicting maintenance performance using object- oriented

design complexity metrics”, IEEETSE, vol. 29, (2003), pp. 77-87.

Authors

Lala Madiha Hakik, received the Maitrise in Computer Engineering, from

Hassan 1
st
 University, FST, Settat, Morocco in 2005, Specialized Master in

Software Engineering, Montpellier -2- University, France in 2009, She is a PHD

Student in Computer Science specialized in Software Engineering, University

Hassan 1
st
, FST, Settat, Morocco, 2014. Lecturer, Hassan 1

st
 University‏, It-

Learning Campus, Settat, Morocco. (Jan 2013- 8 Jun 2013). Lecturer, Umm Al-

Qura University‏, Computer sciences and Information System Faculty, Mekkah,

KSA, (2011-2012). Lecturer, Taibah University, Sciences Faculty, Yanbu, KSA,

(2010-2011)

Rachid El Harti, Full professor in Mathematics and applications, FST,

Settat, Hassan 1
st
 University, Morocco.

http://uqu.edu.sa/english
http://uqu.edu.sa/english
http://uqu.edu.sa/english

