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Abstract 

Model checking has proven to be a successful technology to verify real-time embedded and 

safety-critical systems. However an application of model checking in practice still requires 

manual construction of an environment model, which has a direct impact on verification cost. 

This paper suggests an automated scenario generation technique through a property-based 

static analysis of function-call relationship of the program source code. We present the 

scenario generation process and show application results on the Trampoline operating 

system using CBMC as a back-end model checker. The experimental result shows that our 

approach is able to reduce the verification cost significantly in terms of memory space and 

run time. 
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1. Introduction 

Modern cars consist of up to 100 of small electrical control units to improve the comfort 

and reliability of vehicles, which are controlled by real time operating systems. Therefore, the 

safety of the operating system is a pre-requisite to ensure the safety and reliability of an 

automotive system. 

Model checking [1], is an effective technique to identify subtle issues in software safety 

this is particularly important for automotive systems. Current technical advances in model 

checking enables engineers directly applying the technique to program source code, removing 

the manual model construction process required formerly. CBMC [2] is one of such model 

checking tools, which is capable of verifying almost full ANSI C. It is capable of verifying 

buffer overflows, pointer safety, exceptions and user-specified assertions. Furthermore, it can 

check ANSI-C and C++ for consistency with other languages, such as Verilog. The main 

advantage is that it is completely automated and supports full set of ANSI-C.  

An application of model checking in practice still requires manual construction of an 

environment model, which has a direct impact on verification cost. Especially when the 

technique is to be applied to embedded software, such as automotive real-time operating 

systems, we need to first define the interaction scenario between the operating system and 

application programs in general. A straightforward approach that models the interaction 

behavior as infinite and non-deterministic choices among the system APIs is too costly, since 

the model checking technique is based on the exhaustive search of the whole system state-

space. 
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Our goal is to automatically construct an environment model that preserves environmental 

constraints and minimizes the amount of source code to be verified for a given property. Our 

work anticipates that the efficiency of model checking depends on the modeling of the 

application environment and suggests an approach to automatically generate the environment 

of an automotive operating system in terms of interaction scenarios between the operating 

system and its application environment. This paper presents our approach is automatically 

generate environment models from the structural data dependency information analyzed from 

the source code and experiments comparing the model checking performances using typical 

environment model and our suggested environment model data shows the efficiency of our 

approach over Trampoline OS by using CBMC. The tool structure has provided in Figure 1 to 

present the tool chain that covers the entire system development life cycle including scenario 

generation and verification module. 

 

 

Figure 1. Scenario generation and verification tool chain  

 

The remainder of this paper is organized as follows. Section 2 introduces the related 

literature in this domain; Section 3 contains motivation of our approach; Section 4 presents 

methods and process for the automated scenario generation technique. Experimental result 

and evaluation are displayed in Section 5 where Section 6 presents the limitations of the 

approach. Finally Section 7 concludes the paper with the discussion of further improvement 

on this development. 
 

2. Related Literature 

Most popular technique for scenario generation is UML-based scenario generation [3, 4]. 

Most of those approaches generate abstract test cases directly from the UML models, and 

none of them makes the use of the system source code during the scenario generation. In [4], 

they have presented an approach about automated scenario generation based on UML activity 

diagrams. But in this process they did not developed the verification process for the generated 

scenario. System model can be two types one is Platform Independent Model (PIM) and 

another is Platform Specific Model (PSM). Three categories of code generators can be 

identified depending on the degree of completeness of the PIM and of the resulting PSM: 

skeleton generation, partial generation, and full generation. Skeleton generation has been 

adopted by most tools, and deals only with the static structure of the system. Partial 

generation takes a more complete specification as input. Behavior may be modeled by state 

machines, sequence diagrams, activity diagrams, etc. However, these diagrams are most of 

the time incomplete at PIM level. Full generation tools introduce at PIM level a new action 
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language, conforming to action semantics. The Action Semantics proposal for our approach 

defines by calls and called-by relationship to allow an easy mapping of system structure.   

Few works applies the model-based approaches to the development of automotive 

electronics system based on OSEK/VDX standard. In [5], SmartOSEK platform is to build a 

model-based development environment for automobile applications compliant with 

OSEK/VDX specifications. It consists of an operating system and an integrated development 

environment that consists of many convenient tools. In [6], they present model-based 

approach to develop automotive electronics software by SmartOSEK. Also they present 

simulator-based approach to verify the system model.  

In [7] they describe a software analysis tool for the debugging and verification of TinyOS 

2, MSP430 applications at compile-time using CBMC model checker. This tool is the first to 

allow the programmer to verify a TinyOS application statically; given assumptions about the 

behavior of the node’s environment and assertions upon the state of the node itself, the tool 

explores all possible program executions and returns to the programmer an error trace leading 

to the violation of an assertion, if any exists. Besides memory related errors (out-of-bounds 

arrays, null-pointer dereferences), it also support application-specific assertions, including 

low-level assertions upon the state of the registers and peripherals. In this approach there 

concern was to find the all possible execution path and verify them with CBMC. And in our 

approach particular objective is, for each safety properties find the all possible scenarios and 

verify them to characterize the reliability of the system. Also in this work a TinyOS 

application is verified statically where in our process the scenario generation process and 

verification is automated. 

Compared with the previous literatures in our approach, we have applied a different 

method to generate environment model of Trampoline OS. We did make use of the source 

code directly for scenario generation because there is no model available for trampoline OS 

but only code. Using Understand Source Code Analysis & Metrics [8], we have extracted the 

structural data dependency relations where data about called-by graphs and call graphs of 

functions from Trampoline source code. The generated scenario from called-by graphs and 

call graphs presents a valid calling sequence of the functions according to the source code 

structure. The CBMC tool is customized in our approach to make use of the automated 

scenario generation for verification. Most incentive point of our work is the whole process is 

automated and according our knowledge the technique is newly introduced which is effective 

for model checking process in terms of memory space usage and required runtime. 
 

3. Motivation 

Trampoline [9], is an open source operating system written in C and is based on 

OSEK/VDX; where OSEK/VDX [10] is an international standard for real-time operating 

system used in the field of automotive embedded software.  

Correctness is a crucial concern for real-time operating system, because it affects the safety 

properties of the entire system. In embedded system the assert conditions are concerned for 

safety-critical properties, where CBMC uses bounded model checking techniques to verify 

certain properties such as the violation of assertions. It implements a technique called 

Bounded Model Checking (BMC), that transforms the program and property into Boolean 

formula and uses SAT solver to show whether the formula is satisfiable or not. So if any 

violated property exists then it will return a counterexample with tracing information, which 

confirms an ideal verification for the safety issues of embedded system.  

An application of model checking in practice requires environment model of the system for 

verification, where the environment model based on the interaction scenario of the operating 

system and application environment. For particular properties such as safety properties case 
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we need to generate the environment model from the source code based on the properties 

structural dependency relation and then the environment model can pass to the model checker 

for safety properties verification (Figure 2). 

 

Safety Properties

generate

 

Figure 2. System safety properties verify by model checker 
 

Based on the verification environment, the existences industry-standard technologies are 

constrained random verification, assert based verification, and functional coverage-driven 

verification. To develop an environment scenario for verification a straightforward way is to 

follow the constrained random verification because it increases the reliability in verification 

by detecting the bugs in corner cases. Here the environment scenario is based on random 

system-level APIs. However model checking under arbitrary environment can lead to 

negative outcomes. It can be costly verification;  a randomly generated API services scenario 

exercise the all possible sequence and such an environment exercises all possible interactions 

between the user task and the underlying operating system even when most of the interactions 

are not relevant to verify a given target property. Further it can include invalid scenarios; 

without knowing the structural dependency of a system randomly scenario generation process 

can produce the invalid scenarios.  

To avoid the limitations of existence scenario generation techniques we need a better way 

to model the environment.  Therefore we suggest a method based on four important aspects, 

which are:  

1) From the arbitrary Scenario of API services, end-level-functions scenario has to be 

generated. 

2) Constraints of API services have to be imposed in functions level scenario.  

3) Structural dependency of functions need to be considered 

4) Combindly use of constrained random verification and assert based verification 

technologies to generate the safety properties based scenario. 

 

4. Proposed Scenario Generation Technique 

Our approach automatically constructs an environment model by analyzing the structural 

information of source code and imposing external constraints identified from The 

OSEK/VDX standard. It is a property-based approach: given a property to be verified, we 

first identify variables and functions directly related to the property. We then extract call 

sequence related to the identified functions from which non-deterministic environment model 

is constructed. This section explains the details of our approach, starting from some 

definitions we use throughout this paper. 
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4.1. Terminology 

Definition 1 A Generic-Model-Scenario (GM) is an arbitrary sequence of API calls of an 

operating system. 

Definition 2 A Verification Target Variable (VT) is a global variable appeared in the 

property specification. 

Definition 3 End-Level-Functions (ELF) is the set of functions which directly modify, set, 

or use elements in VT. 

Definition 4 An End-level-functions-Scenario is the calling sequence of End-Level-

functions with called-by structural constraints. 

Definition 5 Root-Level-Functions are API services which are starting functions of the 

called-by graph of an end-level-function.  

Definition 6 An Root-level-function-Scenario is the arbitrary sequence of Root-Level-

Functions. 

 

4.2. Property-based Scenario Generation 

The approach is to generate the End-Level-Functions scenario for a VT by analyzing 

called-by graphs and call graphs of ELF from the kernel of the Trampoline operating system. 

The work flow diagram of our scenario generation process is presented in Figure 3. 

 

 

Figure 3. Workflow diagram of the scenario generation process 

 

Using preprocessing source code of Trampoline OS, and assert condition properties 

database is created with the help of analysis tool. After that database is plugged in with C 
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API, where according to the one of extracted assert condition target variables End-Level-

Functions-Scenario is generated. Finally using model checker verification is taken place for 

the extracted scenario from the Trampoline OS environment. To extract the data about called-

by graphs and call graphs of functions from the Trampoline source code, Understand Source 

code analysis & Metrics tool is used in our work.  

Property-based scenario generation is distributed into three parts, which are (1) Extraction 

of relevant Root-Level-Functions, (2) Pruning call sequences from the identified Root-Level-

Functions to ELF, and (3) Non-deterministic choice of the pruned call sequences after 

applying constraints imposed by the OSEK/VDX standard. 

 

4.2.1. Property-based Scenario Generation 

For extracting the property based Root-Level-Functions the first stage is to find all 

VT and for a particular one variable then second stage is find ELF. Using Understand 

API to extract ELF from the system we have established two criteria. First one, if the 

VT is set by local variable or constant and secondly if the VT is set by other global 

variable of the system. If the VT is assigned by any local variable or constant of the 

system then only find ELF that have directly updated the value of that variable or use 

that variable in assert condition. In Figure 4 the classification of ELF references has 

shown where dot line represents the counted ELF types in our process. Again if the VT 

is set by other global variable in that case we need to consider the ELF list of that 

global variable also. 

 

 

Figure 4. Classification of ELF references 

 

And final stage is for the extracted ELF find the all possible Root-Level-Functions. For 

each ELF reference, we subsequently find out all possible Root-Level-Functions using called-

by graph feature of Understand tool. 

 

4.2.2. Pruning Call Sequences from Root-Level-Functions 

To extract the calling sequence of ELF, need to know the system call structure. Therefore 

traverse from the Root-Level-Functions using call graph feature of Understand tool and find 

the calling sequence of the ELF through each root. 
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4.2.3. Scenario Generation with Imposing Constraints 

In our approach, the system calling sequence of End-Level-Functions is known as scenario. 

Afterwards, in non-deterministic way chooses the Root-Level-Functions and sequentially 

generate the End-Level-Function’s sequence. To make a valid scenario, we also need to 

consider the restrictions between two root functions. OSEK/VDX standard imposes several 

restrictions on services as shown in Table 1.  

Table We have to consider these constraints to generate valid scenario. However in our 

approach the constraints part has established manually, for each system initially constraints 

need to develop manually after that it doesn’t matter how many times we run the scenario 

generation technique it will be automatically imposed the developed constraint part to the 

scenario generation process. In our experiment, after studying the trampoline OS source code 

and the OSEK/VDX standard, we have collected the existing constraints. 
 

Table 1. Constraints on API calls 

 

Without the constraint development module other modules in our process is fully 

automated and platform independent. Now the pseudo code for generating automated scenario 

of Trampoline OS is represented below: 

V: Set of variables used in Safety Properties. 

Dep_V: Set of dependent variables of v, where v∈V. 

Dep_fn: Set of end-level-functions of v and dv, where v∈V and dv∈Dep_V. 

Root_fn: Set of Root-level-functions of df, where df∈Dep_fn. 

Seq_Root_fn: Arbitrary Sequence of Root_fn considering system constraints. 

Seq_Dep_fn: Sequence of Dep_fn for each element of Seq_Root_fn. 

RAND: is a function, takes the set of Root_fn and randomly returns an element of Root_fn.  

Seq_Root_fn_constraint: is a function which takes the root-level-function name as input then 

return 0 if there has no constraints, otherwise return 1 if constraints exist. 

Seq_fn: is a function, take the Root-level-function as input and return the corresponding End-

level-functions sequence. 

1. A task must not be in a waiting state while holding resources, i.e. task 

cannot transit to WaitEvent from the GetResource state.  

2. Without rescheduling Task other API services can be called between 

GetResource and ReleaseResource state, i.e. task cannot transit to Schedule 

state from the GetResource state. 

3. A task must not terminate or chain another task while holding resources, i.e. 

a task cannot transit to TerminateTask or ChainTask from GetResource state. 

4. Every task function should terminate using TerminateTask or ChainTask. 

5. StartOS can be called in initially only. 

6. Number of activate task function cannot be crossed the E_OS_LIMIT of 

Trampoline OS. 

7. For a task function after calling TerminateTask, no API service will be 

allowed to call for that Task. 
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Figure 5. Pseudo code of the scenario generation process 
 

5. Experiment Results 

This section describes the verification result using CBMC and the generated scenarios. All 

experiments were conducted on an Intel Core2 Quad CPU Q8200, 2.33GHz server with 3GB 

of RAM running 64bit Widows 7 OS. From Trampoline OS we have chosen six safety 

properties for the verification, as shown in Table 2. Six variables are extracted from the 

properties, which are ‘tpl_h_prio’, ‘tpl_fifo_rw’, ‘tpl_ready_list’, ‘tpl_kern’, ‘prio’, 

‘tpl_locking_depth’. 

Table 2. List of Safety Properties in Trampoline OS 

1. assert((tpl_h_prio >= 0) && (tpl_h_prio <3)) 

2. assert (tpl_h_prio != -1); 

3. assert (tpl_fifo_rw[tpl_h_prio].size > 0); 

4. assert (tpl_fifo_rw[prio].size < tpl_ready_list[prio].size); 

5. assert (tpl_kern.running != NULL); 

6. assert (tpl_kern.running->state == RUNNING); 

7. assert ((prio >= 0) && (prio < 3)); 

8. assert( tpl_locking_depth > =0 ); 

 

In Figure 6 one of the small scenario for ‘tpl_h_prio’ is represented, which results in a 

successful verification by CBMC. This scenario contains the ELF sequence according to the 

randomly picked 10 root function references. 
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Figure 5. A small scenario of ‘tpl_h_prio’ 

 

For all assertion in Trampoline OS verification has conducted using different scenario 

generation approaches which are typical used scenarios (root-level-functions-scenario and 

GM) and our proposed scenario (end-level-functions-scenario). For ‘tpl_h_prio’ verification 

target, the experimental data is presented in Table 3 for different length of scenario using 

different scenario generation approach. Table 3 covers the name of different scenario 

generation approach, the length of scenario, size of program expression (in term of 

assignments) and runtime (in sec). This resulted data shows that our proposed end-level-

functions-scenario is able to reduce the memory space up to 38% and runtime up to 82% 

compare with other scenario generation technique. 
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Table 1. Run time data of different scenarios 

 
Scenario Generation Approach Length of Scenario 

Size of Program expression        

(No. of assignments) 

Runtime 

(s) 

Root-Level-Functions-Scenario 

10 24214 18.34 

25 30100 35.38 

50 41540 73.87 

100 60622 225.761 

500 204458 Out of Memory 

Generic-Model-Scenario 

10 21240 14.64  

25 22338 16.43  

50 29409 36.01  

100 37626 60.72  

500 101653 814.49  

End-Level-Functions-Scenario 

10 1853 0.77 

25 4198 1.44 

50 7178 2.47 

100 13853 5.97 

500 63583 144.81 

 
  

 

Here Table 4 is presented the run time properties (Number of generated verification 

condition, Size of program expression and the Runtime) based on different asserts conditions 

of OSEK/VDX OS and number of root-level-functions has called. Column 1 contains the 

assert conditions, column 2 contains the assert condition target variable for each entity of 

column 1, column 3 presents the length of scenario in terms of number of root-level-

functions, column 4 present the run time (in second), column 5 presents the number of 

verification condition generated in CBMC and column 6 presents the size of program 

expression (in number of assignments). For each assert condition target two test case results 

has provided, according to the length of scenario 500 and 1000. However in our approach 

scenarios can be generated infinitely but here we have limit the length until 500 and 1000 due 

to CPU memory space constraints. 

 

Table 2. Run time data in verification time 

Assert Conditions
Assert Condition 

Target Variable
Length of Scenario

Runtime               

(s)

No. of 

Generated VCC

Size of Program 

Expression  (No. of 

assignments)

assert(tpl_kern.running!=NULL) 500 567.232 520 121913

assert((tpl_kern.running->state)==RUNNING) 1000 Out of Memory 1096 249792

assert((tpl_h_prio >= 0) && (tpl_h_prio <3)) 500 203.267 690 76899

assert (tpl_h_prio != -1) 1000 892.319 1369 151877

assert (tpl_fifo_rw[tpl_h_prio].size > 0) 500 11.986 838 21856

1000 34.756 1669 43202

500 10.47 413 21005

1000 34.035 849 43092
tpl_ready_list

assert (tpl_fifo_rw[prio].size < tpl_ready_list[prio].size)

tpl_kern

tpl_h_prio

tpl_fifo_rw

 
 

6. Limitations 

For hardware issues (i.e., ‘_setjmp’, ‘_longjmp’) hardware simulation is required to fetch 

the proper behavior. However Understand tool was unable to simulate the hardware behavior 

which resulted invalid call graph for ‘_setjmp’, and ‘_longjmp’ functions. Then trampoline 

behavior has carefully observed and manually set the activities of ‘_longjmp’ and ‘_setjmp’ 

functions. For example for the below case (Figure 7) ‘StartOS’ first call the 

‘tpl_init_machine’ and then after finishing the all function calling of ‘tpl_init_machine’ it will 

call ‘tpl_start_os’. 
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Figure 6. Call Graph of ‘StartOS’ (using Understand tool) 
 

However in trampoline it’s not work according to the Figure 7. Because in callee 

function’s list of ‘tpl_init_machine’ there has a function, ‘tpl_create_context_boot’, 

which use ‘_longjmp’ function reason to switch to ‘tpl_start_os’ function without 

finishing ‘tpl_init_machine’. For this reason we have modified our source code 

manually to acquire the proper call sequence. In Trampoline source code, ‘_longjmp’ 

and ‘_setjmp’ has used different times and as we know the behavior of ‘_longjmp’ and 

‘_setjmp’ is dynamic and depend on hardware functionalities. Therefore we were 

unable to deal with all the cases in our experiments. 
 

7. Conclusion 

Automotive embedded real time OS are often large and complex. That's why Model 

checking often suffers from the state space explosion problem when we intend to verify large 

scenario. In this paper we have represented an innovative and efficient method to generate the 

valid scenario for model checker in automated way, which according to our knowledge no 

such research work developed yet in this Trampoline OS domain. Most importantly the 

technique has shown its efficiency in terms of runtime and usage memory space compares 

with others literatures in this issue. The significant key facts are:  

a) Scenarios are generated referring to the end-level-functions call sequence (call graph 

and called by graph);  

b) Only valid scenarios are generated;  

c) The scenario generation is performed considering the constraints imposed by 

international standard OSEK/VDX;  

d) The last and the most importantly, without deep knowledge about the source code we 

can easily generate the valid scenario automatically, which will provide the 

opportunity to remove the time constraint and will allow to easily handle the source 

code. 

In future work we intend to expand this work to make it more acceptable. With this 

strategy we are planning to focus on the below issues: 

• Our main focus is to generate an alternate way to fetch the hardware behavior, which 

can help to handle the ‘_longjmp’ and ‘_setjmp’ issues. 

• Need to give more attention on constraints part to make sure that all are accounted for.  

• Also it needs more experiment with other source code suit to assure its usability and 

efficiency. 

• Lastly, different model checker such as SatAbs, FeaVer, can be used in the 

verification process instead of CBMC. So we can make a comparison about features 

and effectiveness between different model checkers for this approach. 
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