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Abstract 

The rail running table imposes to the vehicle a forced vibration. It is not smooth but 

instead it comprises a lot of faults that give to the rail running table a random surface. 

Furthermore under the primary suspension there are the Unsprung Masses  which act 

without any dumping directly on the track panel. On the contrary the Sprung (Suspended) 

Masses that are cited above the primary suspension of the vehicle, act through a combination 

of springs and dumpers on the track. A part of the track mass is also added to the Unsprung 

Masses, which participates in their motion. The defects with long wavelength, which play a 

key role, on the dynamic component of the acting loads on the railway track, are analyzed 

using the second order differential equation of motion. A parametric investigation is 

performed for the case of an isolated defect 
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1. Introduction – Loads on the Railway Track  

The railway track is usually modeled as a continuous beam on elastic support. Train 

circulation is a random dynamic phenomenon and, depending on the different frequencies of 

the loads it imposes, there is a corresponding response of the track superstructure. At the 

instant when an axle passes from the location of a sleeper, a random dynamic load is applied 

on the sleeper. The theoretical approach for the estimation of the dynamic loading of a sleeper 

requires the analysis of the total load acting on the sleeper to individual component loads-

actions, which, in general, can be divided into: (a) the static component of the load‚ and the 

relevant reaction/action per support point of the rail (sleeper) and (b) the dynamic component 

of the load, and the relevant reaction/action per support point of the rail (sleeper). The static 

component of the load on a sleeper, in the classical sense, refers to the load undertaken by the 

sleeper when a vehicle axle at standstill is situated exactly on top of the sleeper. For dynamic 

loads with low frequencies the load is essentially static. The static load is further analyzed 

into individual component loads: the static reaction/action on a sleeper due to wheel load and 

the semi-static reaction/action due to cant deficiency [1]. The dynamic component of the load 

of the track depends on the mechanical properties (stiffness, damping) of the system “vehicle-

track” (Figure 1), and on the excitation caused by the vehicle’s motion on the track. The 

response of the track to the aforementioned excitation results in the increase of the static loads 

on the superstructure. The dynamic load is primarily caused by the motion of the vehicle’s 

Non-Suspended (Unsprung) Masses, which are excited by track geometry defects, and, to a 

smaller degree, by the effect of the Suspended (sprung) Masses. In order to formulate the 
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theoretical equations for the calculation of the dynamic component of the load, the statistical 

probability of exceeding the calculated load -in real conditions- should be considered, so that 

the corresponding equations would refer to the standard deviation (variance) of the load [1, 

2]. In the present paper the dynamic component of the acting loads is investigated through the 

second order differential equation of motion of the Non Suspended Masses of the Vehicle and 

specifically the transient response of the reaction/ action on each support point (sleeper) of the 

rail. 

 

  

Figure 1. “Railway Vehicle - Railway Track” as an Ensemble of Springs and 
Dashpots 

 

2. Static and Semi-static Components of the Actions and Reactions 

The most widely used theory (referred to as the Zimmermann theory or formula [3]) based 

on Winkler analysis [4] examines the track as a continuous beam on elastic support whose 

behavior is governed by the following equation [5]: 

                                                                                                                                       (1) 

 

where y is the deflection of the rail, M is the bending moment, J is the moment of inertia of 

the rail, and E is the modulus of elasticity of the rail. From the formula above it is derived that 

the reaction of a sleeper Rstatic is (since the load is distributed along the track over many 

sleepers): 

                                                                                                                                       (2) 

where Qwheel the static wheel load, ℓ the distance among the sleepers, E and J the modulus 

of elasticity and the moment of inertia of the rail, Rstat the static reaction/action on the sleeper, 

and ρ reaction coefficient of the sleeper which is defined as:     y, and is a  uasi-coefficient 

of the track elasticity (stiffness) or a spring constant of the track.      stat equals to Rstat/Qwheel, 

which is the percentage of the acting (static) load of the wheel that the sleeper undertakes as 

(static) reaction. In reality, the track consists of a sequence of materials –in the vertical axis– 
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(substructure, ballast, sleeper, elastic pad/ fastening, rail), that are characterized by their 

individual coefficients of elasticity (static stiffness coefficients)  i (Figure 2). 

 

 

Figure 2. Cross-section of Ballasted Track, Characteristic Values of Static 
Stiffness Coefficients 

 

  

                                                                                                                                         (3)                                                                                                                                                                                                                 

 

where ν is the number of various layers of materials that exist under the rail -including 

rail– elastic pad, sleeper, ballast, etc. The semi-static Load is produced by the centrifugal 

acceleration exerted on the wheels of a vehicle that is running in a curve with cant deficiency, 

given by  the following equation ([1, 6, see also 7]):                                , where α is the cant 

deficiency, hCG the height of the center of gravity of the vehicle from the rail head and e the 

track gauge. The semi-static Action/Reaction is derived by the multiplication of Qα by the 

  stat. So equation (2b) is transformed to: 

                                                                                                                                          (2c) 

  

 
 

3. The Second Order Differential Equation of Motion for the Dynamic 

Component of the Loads  

The dynamic component of the acting load consists of the action due to the Sprung or 

Suspended Masses (SM) and the action due to the Unsprung or Non Suspended Masses 

(NSM) of the vehicle. To the latter a section of the track mass is added, that participates in its 

motion [6]. The Suspended (Sprung) Masses of the vehicle –masses situated above the 

primary suspension (Figure 1)– apply forces with very small influence on the trajectory of the 

wheel and on the excitation of the system.  This enables the simulation of the track as an 

elastic media with damping which takes into account the rolling wheel on the rail running 

table ([7], [8], [9]). Forced oscillation is caused by the irregularities of the rail running table 

(simulated by an input random signal) –which are represented by n–, in a gravitational field 

with acceleration g. There are two suspensions on the vehicle for passenger comfort purposes: 

primary and secondary suspension. Moreover, a section of the mass of the railway track 

participates in the motion of the Non-Suspended (Unsprung) Masses of the vehicle. These 

Masses are situated under the primary suspension of the vehicle.  
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We approach the matter considering that the rail running table contains a longitudinal fault/ 

defect of the rail surface. In the above equation, the oscillation of the axle is damped after its 

passage over the defect. Viscous damping, due to the ballast, enters the above equation under 

the condition that it is proportional to the variation of the deflection dy/dt. To simplify the 

investigation, if the track mass (for its calculation see [6], [9]) is ignored -in relation to the 

much larger Vehicle’s Non Suspended Mass- and bearing in mind that y+n is the total 

subsidence of the wheel during its motion (since the y and n are added algebraically), we can 

approach the problem of the random excitation, based on a cosine defect (V<< Vcritical=500 

km/h): 

                                                                                                                                      (4)  

The second order differential equation of motion is: 

                                                                                                                                       (5)  

 

The complete solution of which using polar coordinates is ([5], p.199 and ch.3): 

                                                                                                                                       (6) 

 

where, the first term is the transient part and the second part is the steady state. 

 

4. Calculation Methods of the Actions on Railway Track  

The magnitude of the actions on each support point of the rail, (e.g. a concrete sleeper), are 

calculated using the main four methods of semi-analytic approach and are presented below. 

The actions are a percentage of the vertical loads, due to their distribution on more than one 

support point of the rail (sleepers). The track panel, as a continuous beam on elastic 

foundation, is loaded by the axle of the railway vehicle and this load is distributed to adjacent 

sleepers (due to the spring constant  total). The sleeper, on which the wheel acts, undertakes 

its reaction R which in practice is the Design Load/ Action on the sleeper. 

 Method cited in French Literature: According to the French literature, for the estimation 

of the total loads acting on track the standard deviation of the dynamic component must be 

calculated: 

               

 

Where: σ(ΔQNSM) is the standard deviation of the dynamic component of the total load due 

to Non Suspended Masses that participates in the increase of the static load ([6], [10]), 

σ(ΔQSM) is the standard deviation of the dynamic component of the total load due to the 

Suspended Masses that participates in the increase of the static load ([10]).  

 

 

where: Qwheel = the static load of the wheel (half the axle load), Qα  = load due to 

superelevation  deficiency, the action/ reaction (R) on each support point of the rail, that is for 

each sleeper sleeper is calculated for the static, semi-static and dynamic components of the 

acting load [6, 9, 10]: 
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where: Rtotal = the total action/reaction on each sleeper after the distribution of the acting 

load,  the factor of 2 in the equation above covers a 95.5 % probability of occurrence,   stat  is 

the static reaction coefficient of the sleeper which is equal to: 

 

 

where:  total  = coefficient of total static stiffness of track in kN/mm, ℓ   = distance between 

the sleepers in mm, Ε, J   modulus of elasticity and moment of inertia of the rail   

Method cited in German Literature: In the German literature, the total load Qtotal (static 

and dynamic) acting on the track, is equal to the static wheel load multiplied by a factor. After 

the total load is estimated, the reaction R acting on a sleeper, which is a percentage of the 

total load Qtotal can be calculated [12, 13]: 

 

where: Qwheel is the static load of the wheel, and: (a)  s     .1 φ  for excellent track 

condition, (b) s     .  φ  for good track condition and (c)  s     .  φ  for poor track condition, 

where: φ is determined by the following formulas as a function of the speed: (i) for V < 60 

km h then φ   1 and (ii) for 60 < V < 200 km/h   then:                      , where V the maximum 

speed on a section of track and t coefficient dependent on the probabilistic certainty P (t=1 for 

P=68.3%, t=2 for P=95.5% and t=3 for P=99.7%).   The reaction R of each sleeper is 

calculated according to [14]:                    , where: ℓ    = distance between the sleepers, and: 

                         , where: C = ballast modulus [N/mm3] b= a width of conceptualized 

longitudinal support according to [14],  that multiplied byℓ  equals to the loaded surface F of 

the seating surface of the sleeper. Consequently: 

                                                                                                                                        (9a) 

 

 

 

The equation (9a) for the action/ reaction (Rtotal) on each support point of the rail, that is 

each sleeper is transformed, for the total load, static and dynamic as follows: 

                                                                                                                                      (9a’)  

 

for Vmax ≤     km h (1 4.   mi h),  with probability  of occurrence P 99.7%, where, Qwheel 

  the static load of the wheel (half the axle load),    stat is calculated through equation (8). Prof. 

Eisenmann for speeds above 200 km/h proposed a reduced factor of dynamic component:  

                                                                                                                                       (9b)  
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sleepers- as the literature describe [1, 2, 15], thus equation (9a) should be preferred for the 

sleepers’ dimensioning. 

Method cited in American Literature: This method is described in [16] (p. 16-10-26/32 and 

Chapter 30), [17] (p. 247/273) and it is based on the same theoretical analysis of continuous 

beam on elastic foundation. The dynamic load  is dependent on an impact factor θ: 

                                                                                             

 

where: D33 in inches a wheel’s diameter of 33 inches, Dwheel in inches the wheel’s diameter 

of the vehicle examined, V the speed in miles/hour. The total  load is:  

The maximum deflection and moment are: 

where:  k in lb/inch
2
 is the rail support modulus derived by the relation, p=k·w=k·y and as 

easily can be found k   ℓ, and it can be found easily that:  

 

 

where: L is the “elastic length” given previously by the method cited in the German 

literature. The maximum Reaction/ Action Rmax on each support point of the rail (sleeper)] is: 

                                                                                                                                         (10a) 

 

The mathematical operations lead to: 

                                                                                                                                         (10b) 
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coordination of the Greek Railways with co-ordinator the present author. The results of the 

research program have been published and the interested reader should read [1, 2, 5, 7]. This 

method was developed, proposed and appeared in literature after the aforementioned 

extensive research program. The following simplified equation is proposed for the calculation 

of actions on the track panel [1, 2, 5]:  

                                                                                                                                       (11a) 
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                                        ,  

 

and hTRACK is given by the equation (13a) below. The equation (11a) is transformed in: 

 

                                                                           

 

                                                               (11b) 

                                                                                                                                         (11b) 

 

 

The result of equation (11b) in kN, for a probability of occurrence  99.7 %, where Qwheel = 

the static wheel load in kN, Qα = the load due to superelevation deficiency in kN, mNSM-vehicle 

the mass in tons (1t = 2204.62 pounds) of the Non Suspended Masses of the vehicle, mTRACK 

the track mass participating in their motion in tons also (for the calculation of the mTRACK see 

[18, 19, 20]),  total in kN mm, ℓ the distance between the sleepers in mm, V in km h,  NL 

ranging between 0.7 and 1.5 dependent on the track leveling defaults and kα coefficient of the 

condition of the rail running table, ranging from  894 .4 ∙1 
-7

 for ground rail running table to 

155769.7 ∙1 
-7

 for non-ground rail running table, for tracks of good condition and maybe up 

to 324520.28∙1 
-7

 for secondary lines with rail running table in a very bad condition ([5], [7], 

[21]), E the modulus of elasticity [kN/mm
2
], J the moment of inertia of the rail [mm

4
], 

σ(ΔQNSM) = the standard deviation of the dynamic load due to Non Suspended Masses and 

σ(ΔQSM) = the standard deviation of the dynamic load due to Suspended Masses, the pad 

stiffness is calculated through a trial-and-error procedure that ensures equilibrium among the 

numerous springs-components of the track system. In [22] this method is adopted, by the 

International Federation of Concrete, for pre-cast concrete railway track systems design.  

 

5. Verification of the four Calculation Methods for the Actions on Sleepers 

with Real Data from Track Observations  

In Greece until 1999, twin-block concrete sleepers of French technology were exclusively 

used, namely Vagneux U2, U3 with RN fastenings, and U31 with Nabla fastenings. Since 

then, monoblock sleepers of pre-stressed concrete B70 type with W-14 fastenings have been 
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operational speed Voperational = 140 km/h. The calculations performed by the three methods did 
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cracking at all.  After the research, the Giannakos (2004) method was developed whose 

results successfully predicted the extended cracking of the U2/U3 sleepers [1, 2], calculating 

actions over the cracking threshold and in almost all cases over the failure threshold. This 
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method was derived from theoretical analyses and/or measurements from laboratory tests 

performed in Greece, Austria, France, and Belgium and observations from real on-track 

experience. Moreover, International Federation of Concrete (fib) has adopted this method for 

precast concrete railway track systems [22]. The conditions of the Greek network between the 

1980s and the beginning of 1990s, consisted of  very compacted, stiff support with polluted 

ballast bed ( ballast = 380 kN/mm) and substructure classified according to the fluctuation of 

coefficient  substructure for the seating of the track from (a)  substructure =  40 kN/mm for 

pebbly substructure to the most adverse conditions of either (b)  substructure = 100 kN/mm, 

which corresponds to frozen ballast bed and substructure or approximately the rigidity of 

Newly Constructed Lines 1 (NBS1) of the DB – German Railways (107 kN/mm) [23], or (c) 

 substructure = 250 kN/mm for stiff (rigid) subgrade at the bottom of a tunnel or on a concrete 

bridge with small height of ballast-bed. The calculations according to the three 

aforementioned methods were programmed in a computer code and parametric investigations 

were performed varying the stiffness of the substructure as described in [5] and [1].  The 

results are depicted in Figure  , with  total=100 kN/mm the most characteristic value of the 

subgrade. 

 

 

Figure 3. Calculation of actions on U2/U3 twin-block sleepers with the four 
methods 

 

The forces on the sleeper are calculated according to the French, the German, the AREMA 

and Giannakos (   4) method. On the same figure the limits of the three regions of “strength” 

of the U2/U3 sleeper are plotted as described in its technical specifications. The characteristic 

maximum value for  substructure is 100 kN/mm, depicted in the Figure 3, by a vertical line. It is 

noted that the loads on the sleeper estimated by the AREMA, the French, and the German 

methods are below the R2 Region/ Cracking Threshold limit (125-130 kN). This means that 

no cracking of the sleepers is predicted with these three methods, in contrast with the situation 

observed on track in the Greek Railway Network. On the other hand, Giannakos (2004) 

method estimates load levels on the sleepers that lie within the R3 Region/ Failure Threshold 

and is successful in predicting the extended cracking that was observed (over 60% of the 

number of sleepers laid on track [1]). 

 



International Journal of Control and Automation 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC            203 
 

6. The Specific Case of an Isolated Defect  

The aforementioned methods in paragraph 4, give equations to calculate the actions on 

track depending on the parametrical analysis of the conditions on the railway track. In this 

paper we try to relate the depth (sagittal) of an isolated defect to the dynamic component of 

the load. We focus herein on the term:                                             , from Equation (6) which 

represents the transient part of motion. We investigate this term for ζ  . The theoretical 

analysis for the additional –to the static and semi-static component– dynamic component of 

the load due to the Non Suspended Masses and the Suspended Masses of the vehicle, leads to 

the examination of the influence of the Non Suspended Masses only, since the frequency of 

oscillation of the Suspended Masses is much smaller than the frequency of the Non 

Suspended Masses. If mNSM represents the Non Suspended Mass, mSM the Suspended Mass 

and mTRACK the Track Mass participating in the motion of the Non Suspended Masses of the 

vehicle, the differential e uation is (with no damping ζ  ): 

                                                                                                                                            (12) 

where: g the acceleration of gravity and hTRACK, the total dynamic stiffness coefficient of 

track: 

                                      ,                                                                                                      (13)  

 

where the track mass mTRACK that participates in the motion of the Non Suspended 

(Unsprung) Masses of the Vehicles,  total the total static stiffness coefficient of the track, ℓ the 

distance among the sleepers, E, J the modulus of elasticity and the moment of inertia of the 

rail, m0 the unitary mass of track (per unit of length of the track). 

For a comparison of the theoretical track mass to measurement results refer to [18] and [19]. 

The particular solution of the differential Equation (12) corresponds to the static action of the 

weight of the wheel:                . We assume that the rolling wheel runs over an isolated 

sinusoidal defect of length λ of the form: 

 

 

where n is the ordinate of the defect. Consequently, the ordinate of the center of inertia of the 

wheel is n+z. Defining τ1 as the time needed  for the wheel to pass over the defect at a speed 

V:                , then: 
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Where:  

 

and ω1 the cyclic frequency of the external force and ωn the natural frequency.  

The additional dynamic component of the load due to the motion of the wheel is: 

                                                                                                                                        (14) 

 

To solve equation (12) we divide by (mNSM+mTRACK): 

                                                                                                                                        (15) 

 

differential equation of motion for an undamped forced harmonic motion ([24], [25]): 

 

 

where: 

The complete solution is (see Annex 1)                                                                        (16) 

  

 

when: k=hTRACK, m=mNSM+mTRACK,  and: 

 

The general solution of equation (15) is: 

 

 

 

and: 

                                                                                                                                           (17) 

 

where, Tn  π ωn the period of the free oscillation of the wheel circulating on the rail and 

T1  π ω1 the necessary time for the wheel to run over a defect of wavelength λ: T1=λ/V. 

Consequently, Tn/T1=ω1/ωn. 

 

From equation (17):                                                                                                           (18) 
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We can investigate equation (18) after a sensitivity analysis by variating parameters: for 

given values of Tn/T1=ω1/ωn and for given value of V (for example equal to 1) the time period 

T1 is proportional to μ  .1,  . , … 1.  of defect λ. Equation (18) is transformed: 

                                                                                                                                           (19) 

 

 

where n=ωn/ω1, ω1=λ/V and we examine values of μ·λ=0, 0.1λ, 0.2λ,...., 0.8λ, 0.9λ, λ, for 

discrete values of n ωn ω1 ( Τ1 Τn) and μ a percentage of the wavelength λ. In Figure 4 the 

equation (19) is depicted. 

 

7. A Defect of Long Wavelegth in High Speed  

The first term in the bracket of equation (19) is depicted on the vertical axis while on the 

horizontal axis the percentages of the wavelength μ·λ are shown. We observe that z(x) has its 

maximum value for T1/Tn=0,666667=2/3, equal to 1,465: 

                                                                                                                                         (20) 

 

for x=0,91λ. The relation T1/Tn represents the cases for short and long wavelength of the 

defects. For T1/Tn=2-2,5 the wavelength is long  and for T1/Tn << the wavelength is short ([6], 

p.49). The second derivative of z(x) from equation (17), that is the vertical acceleration that 

gives the dynamic overloading due to the defect, is calculated: 

                                                                                                                                        (21a) 

 

                                                                                                                                        (21b)  

 

 

for discrete values of n ωn ω1 ( Τ1 Τn) and μ a percentage of the wavelength λ, and 

Tn=0,0307 sec as calculated above. The additional subsidence of the deflection z at the 

beginning of the defect is negative in the first part of the defect. Following the wheel’s 

motion, z turns to positive sign and reaches its maximum and possibly afterwards z becomes 

again negative. After the passage of the wheel over the defect, one oscillation occurs which 

approaches to the natural cyclic frequency ωn (this oscillation is damped due to non-existence 

of a new defect since we considered one isolated defect) in reality, even if in the present 

analysis the damping was omitted for simplicity. The maximum value of z is given in Table 1 

below, as it is –graphically– measured in Figure 4. 

It is observed that the maximum value is shifted towards the end of the defect as the ratio 

T1/Tn decreases, that is when the defect’s wavelength becomes short. The maximum is 

obtained for T1/Tn = 0,666667 = 2/3. For each combination of “vehicle + track section” the 

critical value of the speed V, for which the 2/3 are achieved is a function of the wavelength λ.  
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Since:                                    , we can calculate the critical speed V critical for any 

combination of track layers and their corresponding stiffness. As a case study we use the 

ballasted track depicted in Figure 1, for high speed, e uipped with rail UIC6  ( rail = 75.000 

kN mm), monoblock sleepers of prestressed concrete B7  type ( sleeper = 13.500 kN/mm), 

W14 fastenings combined with pad Zw7   Saargummi ( pad fluctuating from 50,72 to 48,52 

kN mm), ballast fouled after   years in circulation ( ballast = 380 kN/mm) and excellent 

subgrade  substructure for high speed lines:  subgrade = 114 kN/mm [e.g. the New Infrastructure 

(NBS) of the German Railways]. The calculation of the static stiffness coefficient of the 

subgrade  subgrade for a high speed line of this type as it is derived from practice is given in 

[26] and [27]. For this cross section of ballasted track, hTRACK is equal to 85,396 kN/mm = 

8539,6 t/m and mTRACK is equal to 0,426 t (for the calculations see [18, 19] ). If we 

consider an average mNSM=1,0 t, then: 

 

 

 

 

Figure 4. Mapping of Equation (19). On the Horizontal Axis the percentage of 
the wavelength λ of the defect is depicted. On the Vertical Axis the first term of 

equation (19), inside the brackets, is depicted 

 

Table 1. Maximum Values of ζ=[(mNSM+mTRACK)/mNSM]·[zmax/α] 
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Where g = 9,81 m/sec
2
, the acceleration of gravity. The period Tn is given by: 

 

 

where an average hTRACK=8539,6 t/m is used and Vcritical  is given in [m sec], λ in [m]. For a 

wavelength of 1,0 m, Vcritical = 57,69 m/sec = 207,7 km/h. If we consider a defect with a 

wavelength that produces a forced oscillation with: 

                , we calculate (in Figure 4 is  ,19, for x  ,41·λ): 

 

with the values calculated above: Tn = 0,026 sec, T1 = 0,065 sec, the wavelength ℓ e uals: 

 

This value represents a defect of long wavelength. The static deflection due to a wheel load 

of 11,25 t or 112,5 kN is equal to: 

 

 

 

 

 

Consequently, for α=1 mm, that is for every mm of vertical defect, the dynamic increment 

of the static deflection is equal to (0,133/0,606)=21,9%  of the static deflection (for every mm 

of the depth of the defect). 

If we examine the second derivative (vertical acceleration) as a percentage of g, the 

acceleration of gravity, then [from equation (21)]: 

 

 

                                                          

                                                                                                                                        (22) 

 

 

Equation (22) is plotted in Figure 5.  
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Figure 5. Mapping of the equation (22), for the vertical acceleration due to a 
defect of long wavelength. In the Horizontal Axis the percentage of the 

wavelength λ of the defect is depicted. In the Vertical Axis the first term of 
equation (22), in the brackets, is depicted 

 

The first term in the bracket of Equation (22) is depicted on the vertical axis while on the 

horizontal axis the percentages of the wavelength μ·λ are shown. For the case calculated 

above in Figure 5, at the point x=0,41·λ the term in bracket has a value of   -0.332: 

 

 

Equation (12) (its second part corresponds to the static action of the wheel load) has as 

particular solution: 

 

Abandoning the second part leads to the classic solution where z is the supplementary 

subsidence owed to the dynamic increase of the Load. The dynamic increase of the Load is 

equal to: 
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the Non Suspended Masses of the wheel ([18], [19], [7]). Thus finally the Qdynamic will be 

reduced when the  total and the hTRACK are increased. 

8. Conclusions 

For a defect of wavelength λ and sagitta of 1 mm (depth of the defect), the dynamic 

increase of the acting load –compared to the static wheel load– is equal to 9,24%. 

Furthermore from Figure 4 and Figure 5, it is verified that when the speed increases, the 

period T1 decreases and the supplementary sagitta (depth of the defect) increases. 

Supplementary, since it is added to the static deflection and it is owed to the dynamic 

component of the load. The increase of the dynamic component of the load increases faster 

since it is dependent on the square of the speed (ω1)
2
. When the dynamic stiffness coefficient 

hTRACK increases, Tn decreases, T1/Tn increases, the supplementary sagitta decreases (for the 

same V), and the dynamic component of the action decreases also. Thus the softer the pad the 

higher percentage of the load is transmitted through the sleeper under the load. Finally in total 

the reaction per sleeper in the case of softer pads is smaller due to a distribution of the load 

along the track in more sleepers, as it can be derived from literature ([1], [2], [5]).  

 

ANNEX  1 
 

For the free oscillation (without external force) the equation is: 

 

                                                                                                                                              (1.1) 

 

The general solution is [4]: 

 

                                                                                                                                               (1.2) 

Where: 

                                                                                                                                                (1.3) 

                                                                                 

If we pass to the undamped harmonic oscillation of the form: 

 

                                                                                                                                                     (1.4) 

where: 

                                                                                                                                                      (1.5) 

                                                                                 

The particular solution of the linear second order differential equation (1.4) is of the form: 

                                                                                                                                                      (1.6) 

Substituting equation (1.6) to equation (1.4) we derive: 
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Calculating the values of equation (1.8) and (1.9) at t=0: 

 

                                                                                                                                                   (1.10) 
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and for initial conditions z( )  ( )  :                                                                                        (1.13)  
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