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Abstract. Atomic broadcast protocols, such as libPaxos [1], can help ensure 
transmission consistency in cloud computing services. To upgrade the 
performance of libPaxos, this paper presents a new protocol which divides the 
topology into areas to process messages in a distributed way and uses a rotating 
mechanism to effectively balance the server loads. Simulation results show that, 
when compared with existing protocols, the proposed protocol yields higher 
throughput and lower latency under different client loads.  
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1   Introduction 

Today’s internet services need to handle extensive traffic loads because users not only 
read the information but also become information contributors, producing massive 
writings. To cope with the situation, service providers usually involve multi-layered 
caching backup mechanisms to facilitate data access and upgrade system scalability. 
When facing large-scale, high-concurrency community network services, they tend to 
manage by powerless approaches which may require higher performance, storage, 
scalability or availability. For internet servers, how to handle the huge amounts of 
messages has become a major challenge.  

A new type of database NoSQL (Not only SQL) [2], featuring high scalability and 
flexible storage formats, is designed to handle the colossal data so as to ensure service 
availability. It will ensure that each database maintains the latest information and 
messages do not conflict with one another. To maintain transmission consistency for 
cloud computing services, we can involve atomic broadcast protocols such as libPaxos, 
Mencius or RingPaxos. libPaxos [1], which implements the Paxos algorithm [3, 4], 
executes atomic broadcast in distributed applications. Consisting of clients, proposers, 
acceptors and learners, libPaxos can maintain desirable data consistency and 
performance in distributed architectures but needs to send frequent messages from 
proposers to acceptors and clients. When data build up, messages are likely to over-
concentrate on a proposer, degrading the overall performance of the mechanism 
(because handling messages over-concentrated in one proposer takes excessive 
bandwidth and network loads). Mencius [5] adopts Paxos and multi-proposers [6] to 
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distribute proposer loads. It lets each server act as a proposer to share the load. By 
reducing the excessive load on one proposer, it enhances the overall performance. The 
problem is, when both the message load and bandwidth are constant for proposers, 
performance improvement may cut back when proposer rotation is used to avoid 
excessive load concentration. RingPaxos [7] uses the ring topology to solve the 
proposer load concentration problem. It can distribute the proposer load and contain 
bandwidth consumption, but when an acceptor fails, it has to wait until the acceptor 
gets repaired in the round, decreasing the overall transmission efficiency.  

To upgrade the performance of libPaxos, this paper introduces a new protocol 
which divides the topology into various areas to process messages in a distributed 
way and meanwhile uses an effective rotating mechanism to balance the server loads. 
Simulation results show that, when compared with other protocols, our new protocol 
generates constantly better throughput and less latency under different client loads.  

2  The Proposed Protocol 

Besides the multi-proposer concept, our new protocol brings in the concept of 
partitioning to handle each message and avoid extreme load concentration on a single 
server. The new protocol, the Area-based RingPaxos (ARP), partitions the ring 
topology into multiple areas. It uses multi-proposers to reduce the probability of 
message congestion and consistent hashing to implement the concept of partitioning. 3 
proposers will perform the Paxos algorithm in 3 areas to collect message statistics, and 
each proposer will take turns acting as the leader proposer to balance load capacity. 
The basic principle of consistent hashing [8, 9] is that server nodes and keys (based on 
servers’ IPs) are mapped to 0~232-1 positions of the ring structure following the same 
hash algorithm. When a write request comes in, calculate the key IP’s corresponding 
hash value: If corresponding exactly to a server’s hash value, write directly to the 
server; if not, go clockwise to find the next server to write. Restart from 0 when 
finding no corresponding server after hash value 232-1; continue clockwise to find the 
nearest server when a found server crashes. It can effectively reduce the server load or 
efficiently add/ remove any servers to balance the server load. 

In our protocol, a server is placed under each area to act as an acceptor to transmit 
prepare and deliver messages (messages used to maintain data consistency), handle 
client requests and send them to the proposer in charge of the area. A proposer will 
collect client messages in its area and send them to the leader proposer (by sending 
promise and result messages to the acceptor or discuss messages to the leader 
proposer). The leader proposer then handles discuss messages received from other 
proposers and returns agree messages to ensure data consistency in different areas.   

ARP divides message processing into 2 phases. In Phase 1a, when an acceptor 
receives a client request, it sends a prepare message to the proposer in charge to check 
the round number and ballot number, to make sure they are not repeated or overwritten 
(to avoid information inconsistency). After receiving the two numbers, the proposer 
will confirm if they are consistent with the current running round: If yes, return the 
latest promise message to the acceptor and end Phase 1; otherwise, ask the acceptor to 
resend the prepare message. In Phase 2a, the acceptor checks the promise message 
from the proposer and sends a deliver message (with the round and ballot numbers 
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promised by the proposer) along with the client request to the proposer. The proposer 
then sends a discuss message to the leader proposer which compares the message with 
messages from other proposers. When a message conflict happens, the leader proposer 
will check if the numbers are consistent with the latest values. If not, it will proceed to 
the next step. When the leader proposer sends the agree message to the other proposers 
in Phase 2b, data consistency in different areas is achieved. After receiving the agree 
message from the leader proposer, the proposer sends a result message to the acceptor 
which then sends the final resolution to the client.  

In our protocol, when a proposer crashes, the acceptor will wait for the proposer’s 
message to the end of the specified time limit, and then replace it by a neighboring 
acceptor. When a leader proposer crashes, the other proposers will wait until it 
recovers. An acceptor crash will not affect the operation of our protocol because we do 
not let a client send a request to a crashed acceptor; instead, we will lead the client 
request to another acceptor selected by consistent hashing.  

 
Table 1. Simulation parameters 

 
 Experiment Setting 

Number of values 30(concurrently) 

Value sizes 300、1000、2000、4000(bytes) 

Number of nodes 4 

Number of 

simulation 

10 

OS Fedora 8 

 

 
Fig. 1. Values per second vs. client value sizes. 

3   Experimental Performance Evaluation 

Experimental evaluation using the DETER Testbed [10] has been carried out to 
compare the performance of APR, LibPaxos, Mencius and RingPaxos in terms of 
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values per second (vps), kilobytes per second (kbps) and latency. Table 1 lists the 
simulation parameters. The results are obtained over a large number of values, 
specifically when clients send concurrently 30 values per 0.1 second. We measure the 
data size handled by each protocol from the client side (receiving all final resolutions), 
and use the maximal handled data size as the performance indicator.  

Figure 1 depicts values per second (vps) for different client value sizes. Mencius 
and libPaxos give almost the same results at smaller value sizes when the required 
processing data and bandwidth usage are containable. At bigger value sizes, we detect 
smaller vps, i.e., degraded processing efficiency, because the server needs to do extra 
save. When the value sizes grow bigger, Mencius yields higher vps than libPaxos 
because its leader rotation mechanism avoids message concentration on a leader.  The 
ring structure in RingPaxos reduces load buildup on a proposer and helps handle more 
client messages. At higher value sizes, our ARP produces close results with Mencius 
and RingPaxos, but at lower value sizes it produces the highest vps (by partitioning the 
ring into areas to reduce bandwidth requirement between proposers and clients or 
acceptors).  

 Figure 2 depicts latency (in milliseconds) vs. client value sizes. Latency is defined 
as the time duration when a client sends a request till it receives the final resolution. 
Each result is the average from 500 samples (client requests). The results show a 
reasonable performance trend: when the value sizes grow, latency increases for all 
protocols. libPaxos produces remarkably higher latency than others because it has only 
one proposer to deal with client requests. Mencius has much shorter latency than 
libPaxos because its multi proposers share the message load and speed up message 
processing. When client value sizes grow over 2000 bytes, RingPaxos has less latency 
than Mencius as it employs the ring structure to carry out message transmission. Our 
ARP, which uses acceptors to receive client messages in order to share/ease the 
burdens of proposers, yields the least latency (we use the various roles in the system to 
equally share the proposer loads and raise the processing speed). When client value 
sizes > 2000 bytes, latency of ARP comes very close to that of RingPaxos – this is 
because our topology for message transmission basically resembles the ring structure 
in RingPaxos. The overall advantage, nevertheless, goes to ARP thanks to its special 
topology partitioning mechanism.  

 

 
Fig. 2. Latency vs. client value sizes. 
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5   Conclusions 

This paper presents an Area-based RingPaxos (ARP) atomic broadcast protocol to help 
ensure data consistency for cloud computing services. ARP is distinct in dividing the 
ring structure into various areas to process client messages in a distributed way and in 
using a rotating mechanism to effectively balance the server loads. Simulation results 
show that the two unique features enable the new protocol to outperform existing 
protocols in terms of throughput and latency, under different client loads. 
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