
Efficient Atomic Broadcast in Cloud Computing

Po-Jen Chuang and Wei-Ming Hsu

Department of Electrical Engineering
Tamkang University

Tamsui, New Taipei City, Taiwan 25137, R. O. C.
E-mail: pjchuang@ee.tku.edu.tw

Abstract. Atomic broadcast protocols, such as libPaxos [1], can help ensure
transmission consistency in cloud computing services. To upgrade the
performance of libPaxos, this paper presents a new protocol which divides the
topology into areas to process messages in a distributed way and uses a rotating
mechanism to effectively balance the server loads. Simulation results show that,
when compared with existing protocols, the proposed protocol yields higher
throughput and lower latency under different client loads.

Keywords: Cloud computing, atomic broadcast protocols, consistency,
experimental performance evaluation.

1 Introduction

Today’s internet services need to handle extensive traffic loads because users not only
read the information but also become information contributors, producing massive
writings. To cope with the situation, service providers usually involve multi-layered
caching backup mechanisms to facilitate data access and upgrade system scalability.
When facing large-scale, high-concurrency community network services, they tend to
manage by powerless approaches which may require higher performance, storage,
scalability or availability. For internet servers, how to handle the huge amounts of
messages has become a major challenge.

A new type of database NoSQL (Not only SQL) [2], featuring high scalability and
flexible storage formats, is designed to handle the colossal data so as to ensure service
availability. It will ensure that each database maintains the latest information and
messages do not conflict with one another. To maintain transmission consistency for
cloud computing services, we can involve atomic broadcast protocols such as libPaxos,
Mencius or RingPaxos. libPaxos [1], which implements the Paxos algorithm [3, 4],
executes atomic broadcast in distributed applications. Consisting of clients, proposers,
acceptors and learners, libPaxos can maintain desirable data consistency and
performance in distributed architectures but needs to send frequent messages from
proposers to acceptors and clients. When data build up, messages are likely to over-
concentrate on a proposer, degrading the overall performance of the mechanism
(because handling messages over-concentrated in one proposer takes excessive
bandwidth and network loads). Mencius [5] adopts Paxos and multi-proposers [6] to

CCSC 2013, ASTL Vol. 22, pp. 99 - 103, 2013
© SERSC 2013

99

distribute proposer loads. It lets each server act as a proposer to share the load. By
reducing the excessive load on one proposer, it enhances the overall performance. The
problem is, when both the message load and bandwidth are constant for proposers,
performance improvement may cut back when proposer rotation is used to avoid
excessive load concentration. RingPaxos [7] uses the ring topology to solve the
proposer load concentration problem. It can distribute the proposer load and contain
bandwidth consumption, but when an acceptor fails, it has to wait until the acceptor
gets repaired in the round, decreasing the overall transmission efficiency.

To upgrade the performance of libPaxos, this paper introduces a new protocol
which divides the topology into various areas to process messages in a distributed
way and meanwhile uses an effective rotating mechanism to balance the server loads.
Simulation results show that, when compared with other protocols, our new protocol
generates constantly better throughput and less latency under different client loads.

2 The Proposed Protocol

Besides the multi-proposer concept, our new protocol brings in the concept of
partitioning to handle each message and avoid extreme load concentration on a single
server. The new protocol, the Area-based RingPaxos (ARP), partitions the ring
topology into multiple areas. It uses multi-proposers to reduce the probability of
message congestion and consistent hashing to implement the concept of partitioning. 3
proposers will perform the Paxos algorithm in 3 areas to collect message statistics, and
each proposer will take turns acting as the leader proposer to balance load capacity.
The basic principle of consistent hashing [8, 9] is that server nodes and keys (based on
servers’ IPs) are mapped to 0~232-1 positions of the ring structure following the same
hash algorithm. When a write request comes in, calculate the key IP’s corresponding
hash value: If corresponding exactly to a server’s hash value, write directly to the
server; if not, go clockwise to find the next server to write. Restart from 0 when
finding no corresponding server after hash value 232-1; continue clockwise to find the
nearest server when a found server crashes. It can effectively reduce the server load or
efficiently add/ remove any servers to balance the server load.

In our protocol, a server is placed under each area to act as an acceptor to transmit
prepare and deliver messages (messages used to maintain data consistency), handle
client requests and send them to the proposer in charge of the area. A proposer will
collect client messages in its area and send them to the leader proposer (by sending
promise and result messages to the acceptor or discuss messages to the leader
proposer). The leader proposer then handles discuss messages received from other
proposers and returns agree messages to ensure data consistency in different areas.

ARP divides message processing into 2 phases. In Phase 1a, when an acceptor
receives a client request, it sends a prepare message to the proposer in charge to check
the round number and ballot number, to make sure they are not repeated or overwritten
(to avoid information inconsistency). After receiving the two numbers, the proposer
will confirm if they are consistent with the current running round: If yes, return the
latest promise message to the acceptor and end Phase 1; otherwise, ask the acceptor to
resend the prepare message. In Phase 2a, the acceptor checks the promise message
from the proposer and sends a deliver message (with the round and ballot numbers

Proceedings, The 2nd International Conference on Cloud-Computing and Super-Computing

100

promised by the proposer) along with the client request to the proposer. The proposer
then sends a discuss message to the leader proposer which compares the message with
messages from other proposers. When a message conflict happens, the leader proposer
will check if the numbers are consistent with the latest values. If not, it will proceed to
the next step. When the leader proposer sends the agree message to the other proposers
in Phase 2b, data consistency in different areas is achieved. After receiving the agree
message from the leader proposer, the proposer sends a result message to the acceptor
which then sends the final resolution to the client.

In our protocol, when a proposer crashes, the acceptor will wait for the proposer’s
message to the end of the specified time limit, and then replace it by a neighboring
acceptor. When a leader proposer crashes, the other proposers will wait until it
recovers. An acceptor crash will not affect the operation of our protocol because we do
not let a client send a request to a crashed acceptor; instead, we will lead the client
request to another acceptor selected by consistent hashing.

Table 1. Simulation parameters

 Experiment Setting

Number of values 30(concurrently)

Value sizes 300、1000、2000、4000(bytes)

Number of nodes 4

Number of

simulation

10

OS Fedora 8

Fig. 1. Values per second vs. client value sizes.

3 Experimental Performance Evaluation

Experimental evaluation using the DETER Testbed [10] has been carried out to
compare the performance of APR, LibPaxos, Mencius and RingPaxos in terms of

Efficient Atomic Broadcast in Cloud Computing

101

values per second (vps), kilobytes per second (kbps) and latency. Table 1 lists the
simulation parameters. The results are obtained over a large number of values,
specifically when clients send concurrently 30 values per 0.1 second. We measure the
data size handled by each protocol from the client side (receiving all final resolutions),
and use the maximal handled data size as the performance indicator.

Figure 1 depicts values per second (vps) for different client value sizes. Mencius
and libPaxos give almost the same results at smaller value sizes when the required
processing data and bandwidth usage are containable. At bigger value sizes, we detect
smaller vps, i.e., degraded processing efficiency, because the server needs to do extra
save. When the value sizes grow bigger, Mencius yields higher vps than libPaxos
because its leader rotation mechanism avoids message concentration on a leader. The
ring structure in RingPaxos reduces load buildup on a proposer and helps handle more
client messages. At higher value sizes, our ARP produces close results with Mencius
and RingPaxos, but at lower value sizes it produces the highest vps (by partitioning the
ring into areas to reduce bandwidth requirement between proposers and clients or
acceptors).

 Figure 2 depicts latency (in milliseconds) vs. client value sizes. Latency is defined
as the time duration when a client sends a request till it receives the final resolution.
Each result is the average from 500 samples (client requests). The results show a
reasonable performance trend: when the value sizes grow, latency increases for all
protocols. libPaxos produces remarkably higher latency than others because it has only
one proposer to deal with client requests. Mencius has much shorter latency than
libPaxos because its multi proposers share the message load and speed up message
processing. When client value sizes grow over 2000 bytes, RingPaxos has less latency
than Mencius as it employs the ring structure to carry out message transmission. Our
ARP, which uses acceptors to receive client messages in order to share/ease the
burdens of proposers, yields the least latency (we use the various roles in the system to
equally share the proposer loads and raise the processing speed). When client value
sizes > 2000 bytes, latency of ARP comes very close to that of RingPaxos – this is
because our topology for message transmission basically resembles the ring structure
in RingPaxos. The overall advantage, nevertheless, goes to ARP thanks to its special
topology partitioning mechanism.

Fig. 2. Latency vs. client value sizes.

Proceedings, The 2nd International Conference on Cloud-Computing and Super-Computing

102

5 Conclusions

This paper presents an Area-based RingPaxos (ARP) atomic broadcast protocol to help
ensure data consistency for cloud computing services. ARP is distinct in dividing the
ring structure into various areas to process client messages in a distributed way and in
using a rotating mechanism to effectively balance the server loads. Simulation results
show that the two unique features enable the new protocol to outperform existing
protocols in terms of throughput and latency, under different client loads.

References

1. Primi, M.: Paxos Made Code. Master thesis, Informatics of the University of Lugano (2009)
2. NoSQL, http://nosql-database.org/.
3. Lamport, L.: The Part-time Parliament. ACM Transactions on Computer Systems 16 (2),

133--169 (1998)
4. Lamport, L.: Paxos Made Simple. ACM SIGACT News 32 (4), 18--25 (2001)
5. Mao, Y., Junqueira, F., Marzullo, K.: Mencius: Building Efficient Replicated State

Machines for WANs. In: 8th USENIX Symposium on Operating Systems Design and
Implementation, pp. 369--384 (2008)

6. Lamport, L., Hydrie, A., Achlioptas, D., Multi-leader Distributed System. U.S. patent 7 260
611 B2 (2007)

7. Marandi, P.J., Primi, M., Schiper, N., Pedone, F.: Ring Paxos: A High-throughput Atomic
Broadcast Protocol. In: 2010 Dependable Systems and Networks, pp. 527--536 (2010)

8. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., Kim, B.,
Matkins, L., Yerushalmi, Y.: Web Caching with Consistent Hashing. In: 8th International
Conference on World Wide Web, pp. 1203--1213 (1999)

9. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In: 1997 ACM Symposium on Theory of Computing, pp. 654--663 (1997)

10.Benzel, T., Braden, R., Kim, D., Neuman, C., Joseph, A., Sklower, K., Ostrenga, R.,
Schwab, S.: Design, Deployment, and Use of the DETER Testbed. In: 2007 DETER
Community Workshop on Cyber-Security and Test, pp. 1--1 (2007)

Efficient Atomic Broadcast in Cloud Computing

103

