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Abstract. Pipelining has been used in the design of many PRAM algorithms to
reduce their asymptotic running time. Paul, Vishkin, and Wagener (PVW) used the
approach in a parallel implementation of 2-3 trees. The approach was later used
by Cole in the firstO(lg n) time sorting algorithm on the PRAM not based on
the AKS sorting network, and has since been used to improve the time of several
other algorithms. Although the approach has improved the asymptotic time of many
algorithms, there are two practical problems: maintaining the pipeline is quite com-
plicated for the programmer, and the pipelining forces highly synchronous code
execution. Synchronous execution is less practical on asynchronous machines and
makes it difficult to modify a schedule to use less memory or to take better advantage
of locality.

In this paper we show how futures (a parallel language construct) can be used
to implement pipelining without requiring the user to code it explicitly, allowing
for much simpler code and more asynchronous execution. A runtime system man-
ages the pipelining implicitly. As with user-managed pipelining, we show how the
technique reduces the depth of many algorithms by a logarithmic factor over the
nonpipelined version. We describe and analyze four algorithms for which this is the
case: a parallel merging algorithm on trees, parallel algorithms for finding the union
and difference of two randomized balanced trees (treaps), and insertion into a vari-
ant of the PVW 2-3 trees. For three of these, the pipeline delays are data dependent
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making them particularly difficult to pipeline by hand. To determine the runtime of
algorithms we first analyze the algorithms in a language-based cost model in terms
of the workw and depthd of the computations, and then show universal bounds for
implementing the language on various machine models.

1. Introduction

Pipelining in parallel algorithms takes a sequence of tasks each with a sequence of steps
and overlaps in time the execution of steps from different tasks. Due to dependences
between the tasks or the required resources, pipelined algorithms are designed such that
each task is some number of steps ahead of the task following it. Pipelining has been
used to improve the time of many parallel algorithms for shared-memory models. Paul
et al. described a pipelined algorithm for insertingm new keys into a balanced 2-3 tree
with n keys [28]. They first considered a nonpipelined algorithm that hasO(lg m) tasks,
each of which takesO(lg n) parallel time (steps), for a total time ofO(lg n lg m) on an
EREW PRAM. Each task works its way up from the bottom of the insertion tree to the
top, one level at a time. They then showed how to reduce the time toO(lg m+ lg n) by
pipelining the tasks through the tree. The idea is that when taski is working on levelj
of the tree, taski + 1 can work on levelj − 1, and so on.

Cole used a similar idea to develop the firstO(lg n) time PRAM sorting algorithm
that was not based on the AKS sorting network [19]; the AKS sorting network [2] has
very large constants and is therefore considered impractical. The algorithm is based on
parallel mergesort, and it uses a parallel merge that takesO(lg n) time. The natural im-
plementation would therefore takeO(lg2 n) time—the depth of the mergesort recursion
tree isO(lg n) and the merge task at leveli from the top takesO(lg n − i ) time. Cole
showed, however, that the merge tasks can be pipelined up the recursion tree so that each
merge can pass partial results to the node above it before it completes, and that this leads
to a work-efficient algorithm that takesO(lg n) time. The basic idea of Cole’s mergesort
was later used in a technique called cascading divide-and-conquer, which improved the
time of many computational geometry algorithms [3].

Although pipelining has led to theoretical improvements in algorithms, from a prac-
tical point of view pipelining can be very cumbersome for the programmer—managing
the pipeline involves careful timing among the pipeline tasks and assumes a highly syn-
chronous model. The central idea of this paper is to show that many algorithms can be
automatically pipelined using futures, a construct designed for parallel languages [21],
[5]. Using futures, coding the pipelined algorithms is remarkably simple; we push the
complexity of managing the pipeline and scheduling the threads to a single provably ef-
ficient runtime system. In addition, our approach is the first that addresses asynchronous
pipelined algorithms where the pipeline depth is dynamic and depends on the input data.
We present and analyze several algorithms that require such an asynchronous pipeline.
The approach also gives a natural way to restrict algorithms so they have no concurrent
memory accesses.

The futures construct was developed in the late ’70s for expressing parallelism in
programming languages and has been included in several programming languages [24],
[25], [15], [17], [16]. Conceptually, thefutureconstruct forks a new threadt1 to calculate
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a value (evaluate an expression) and immediately returns a pointer to where the result
of t1 will be written. This pointer can then be passed to other threads. When a threadt2
needs the result oft1, it uses the pointer to request the value. If the value is ready (has
been written) it is returned immediately, otherwiset2 waits until the value is ready. To
avoid deadlocks and for efficiencyt2 is typically suspended while waiting so that other
threads can run.

To analyze the running times of algorithms programmed with futures we use a
two-step process. We first consider a language-based cost model based on futures and
analyze the algorithms in this model. We then show universal bounds for efficiently
implementing the model on various machine models.

Algorithm Analysis. For the cost model we use a slight variation of the PSL model [23].
In this model computations are viewed as dynamically unfolding directed acyclic graphs
(DAGs), where each node is a unit of computation (action) and each edge between nodes
represents a dependence implied by the language. There are three types of dependence
edges in the DAG,thread edgesbetween two successive actions in a thread,fork edges
from the node that creates a future to the first node of the future’s thread, anddata
edgesfrom the result of a future to all the nodes that request the result. The cost of a
computation is then calculated in terms of totalwork (number of nodes in the DAG)
and thedepth(longest path length in the DAG). Analyzing an algorithm in the model
involves determining the work and depth of the algorithm as a function of the input size.

As an example of the use of futures and of the DAG cost model consider Figure 1.
This example has a producer that produces a list of decreasing integers fromn down to
0, where each element of the list is created by its own thread. In parallel, a consumer
consumes these values by summing them. This code pipelines producing and consuming
the values.

Fig. 1. Example code and the top of the corresponding computation DAG. The code syntax is based on
ML and described in the Appendix. Futures are marked with a question mark (?). Then::l syntax adds the
elementn to the head of the listl . When used as a pattern, as inh::t in consume , it binds the head of the
corresponding argument, which must be a list, toh and the tail tot . In the DAG each node represents an action
and each vertical sequence of actions represents a thread. The vertical edges are thread edges, the edges going
to the left are fork edges, and the edges going to the right are data edges.
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We describe and analyze four algorithms with the cost model. The first is a merging
algorithm. It takes two binary trees with the keys sorted in-order within each tree and
merges them into a single tree sorted in-order. The code is very simple and, assuming
both input trees are of sizen, the nonpipelined parallel version requiresO(lg2 n) depth
andO(n) work. We show that, by using the same code but implementing it with futures,
the depth is reduced toO(lg n), which meets previous depth bounds. The next two
algorithms use a parallel implementation of the treap data structure [29]. We show
randomized algorithms for finding the union and difference of two treaps of sizem and
n,m≤ n in O(lg n+ lg m) expected depth andO(m lg(n/m)) expected work. Like the
merge algorithm, the code is simple. There are no previous parallel or pipelined results
for treaps of which we are aware. These three algorithms require a dynamic pipeline,
which varies in depth depending on the input data. As such asynchronous algorithms
have not been considered before, we developed a new technique for analyzing their
computation depth. The fourth algorithm is a variant of Paul, Vishkin and Wagener’s
(PVW) 2-3 trees [28]. Because the bottom-up insertion used in the PVW algorithm does
not map naturally into the use of futures, we describe a top-down variant that does. As
with the PVW algorithm, the pipelining improves the algorithm complexity for inserting
m keys into a tree of sizen from O(lg n lg m) to O(lg n+ lg m) depth. In both cases the
work is O(m lg n). The algorithm can be implemented synchronously and with a fixed
pipeline depth.

Although there has been some work on designing algorithms using futures, the
emphasis of previous work has been on designing and implementing future-based lan-
guages. Because of this emphasis, to our knowledge none of the work has analyzed the
asymptotic cost of algorithms. In fact, most algorithms previously designed using futures
display no asymptotic performance advantage over simpler fork-join parallel algorithms.
As an example consider the quicksort algorithm given in Figure 2. This algorithm was
described by Halstead [24] as a prototypical future-based algorithm. The algorithm is
pipelined since the partial results of apartition can be pipelined in recursive invo-
cations ofqs . From an asymptotic point of view, however, the expected depth of this
algorithm is no better than a nonpipelined version, i.e., one that simply makes the two
recursive calls to quicksort in parallel after the sequential partition is complete. In both

Fig. 2. The quicksort algorithm of Halstead transcribed from Multilisp into the ML syntax.
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cases the algorithms haveO(n) expected depth. Even in terms of constant factors, the
pipelined version has only a small factor more parallelism than the nonpipelined version.

Implementation Analysis. To complete the analysis we consider implementations of
the language-based cost model on various machines. The work and depth costs along
with Brent’s scheduling principle [14] imply that, given a computation with depthd and
workw, there is a schedule of actions onto processors such that the computation will run
in w/p+ d time on ap-processor PRAM. This principle, however, does not tell us how
to find the schedule online—in particular it does not address the costs of dynamically
assigning threads to processors nor the cost of handling the suspension and restarting
required by futures at runtime. Since many of the algorithms are dynamic, the schedule
cannot be computed off line. In addition, Brent’s scheduling principle in general assumes
concurrent memory access, requiring an implementation on a CRCW PRAM. Two key
points of this paper are that all the scheduling and managing of futures can be handled by
a runtime system in an algorithm-independent fashion with provable time bounds, and
that by placing a restriction on the program type, we can guarantee the computation will
require no concurrent memory accesses. We are interested in universal results that place
bounds on the time taken by an implementation on various machine models, including
all online costs for scheduling and management of futures.

Previous results on implementing a model similar to the one we use in this paper [23]
have shown that any computation withw work andd depth can be implemented online
on a CRCW PRAM inO(w/p+ d · Tf (p)) time, whereTf (p) is the time for a fetch-
and-add (or multiprefix) onp processors. The fetch-and-add is used to manage queues
for threads that are suspended waiting for a future to complete. In this paper we show
that for programs that are converted to a form calledlinear code, any computation can
be implemented on the EREW PRAM model inO(w/p+ d · Ts(p)) time, whereTs(p)
is the time for a scan operation (all-prefix-sums) used for load balancing the tasks. Our
implementation also implies time bounds ofO(gw/p+d(Ts(p)+ L)) on the BSP [30],
whereg is the BSP gap parameter and is inversely related to bandwidth andL is the BSP
periodicity parameter and is related to latency,O(w/p + d lg p) on an asynchronous
EREW PRAM [20], andO(w/p + d) on the EREW scan model [6]. The conversion
to linear code is a simple manipulation that can be done by a compiler. Although this
conversion can potentially increase the work and/or depth of a computation, it does not
for any of the algorithms described in this paper. In fact, linear code seems to be a natural
way to define EREW algorithms in the context of a language model.

When mapping algorithms onto a PRAM, our approach loses some time over pre-
vious pipelined algorithms. For example, when we map ourO(lg n) depth,O(m lg n)
work 2-3 tree algorithm onto the PRAM we get a time ofO(m lg n/p + lg n · Ts(p))
as opposed toO(m lg n/p+ lg n) for the PVW algorithm. We note, however, that when
mapped directly onto more realistic models, such as the network models or the asyn-
chronous PRAM, the algorithms perform equally well as the PRAM algorithms and with
much simpler code: In the more realistic models, compaction using prefix sums has the
same latency as either the memory read or write (network models) or the synchroniza-
tion between steps (asynchronous PRAM). Furthermore, our approach can easily handle
dynamic pipelines in which the structure and delays of the pipeline depends on the input
data, such as the treap algorithms we describe. This would be considerably more difficult
to do by hand and we know of no previous PRAM algorithms with dynamic pipelines.
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2. The Model

As with the work of Blumofe and Leiserson [12], [13], we model a computation as a
set of threads and the cost as the size of the computation DAG. Threads can fork new
threads using a future, and can synchronize by requesting a value written by another
thread. A computation begins with a single thread and completes when all threads have
terminated.

A futurecall in a threadt1 starts a new threadt2 to calculate one or more values and
allocates afuture cell for each of these values.1 The threadt1 is passedread pointers
to each future cell and continues immediately. These read pointers can be copied and
passed around to other threads, and at any point any thread that has a pointer can read
its value. The threadt2 is passedwrite pointersto each future cell, which is where the
results values are to be written as they are computed. The write pointers can also be
passed around to other threads, but each can only be written to once. When a thread
reads the value from a read pointer, sometimes called atouch operation, it must wait
until the write to the corresponding cell has completed. As discussed in Section 4, the
read is implemented by suspending the reading thread and reactivating it when the write
occurs. Note that, although a future cell can be written to at most once, in general it can
be read from multiple times. In Section 4 we show that when the code meets a certain
condition called linearity the future cell is read at most once.

To specify when it is necessary to read from a read pointer we distinguish between
strict and nonstrict operations. An operation isstrict on an argument if it needs to know
the value of that argument immediately. For example, all the arithmetic operations are
strict on their arguments, and an operation that extracts an element from a cell is strict
on that cell. An operation isnonstricton an argument if it does not need to know the
value of that argument immediately. For example, passing an object to a user-defined
function or placing an object in a cell are nonstrict because the actual value is not needed
immediately and a pointer to the value can be used instead. Whenever an operation is
strict on an argument and that argument is a read pointer to a future cell, executing the
operation will invoke a read on that future cell. We also assume that writing to a future
cell is strict on the value that is being written. This means that a read pointer cannot
be written into a future cell, which prevents chains of future cells. This restriction is
important for proving bounds on the implementation.

Note that when building a data structure out of multiple cells, such as in a linked list
or tree, operations are strict on the individual cells, not on the whole data structure. For
example, if an operation examines the head of a linked list to get a pointer to the second
element, the operation is strict on the head but not the second or any other element. We
make significant use of this property in the algorithms in this paper.

To describe the algorithms in this paper, we use a subset of ML [27] extended with
futures. The syntax is defined in the Appendix (see Figure 13). The subset we use is
purely functional (no side effects), and we use arrays only for the 2-6 tree algorithm
described in Section 3.4 and otherwise we just use trees. Futures are created by placing
a ? (question mark) before an expression, which will create a thread to evaluate the

1 The ability to return multiple values and have separate future cells created for a single fork is actually
quite important for some of the algorithms we present.
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expression. The number of variables in an ML pattern determines the number of future
cells that an expression creates. We make significant use of the ML pattern matching
capabilities, and have, therefore, included a quick description in the Appendix.

We now consider the DAGs that correspond to computations in the model. The DAGs
are generated dynamically as the computation proceeds and can be thought of as a trace
of the computation. Each node in a DAG represents a unit-time action (the execution
of a single instruction) and the edges represent dependencies among the actions. As
mentioned in the Introduction, there are three kinds of dependence edges in the DAGs:
thread edges, fork edges, and data edges. A thread is modeled as a sequence of actions
connected bythread edges. When an actiona1 within a thread uses a future to start
a threadt2, a fork edgeis placed froma1 to the first action int2. When an actiona1

reads from a future-cell, adata edgeis placed from the actiona2 that writes to that cell
to a1. The cost of a computation is then measured in terms of the number of nodes in
the DAG, called thework, and the longest path length in the DAG, called thedepth. In
analyzing algorithms the goal is to determine the work and depth in terms of the input
size. Determining the work is often simple since it is the time a computation would take
sequentially if futures were not used. Determining the depth can be more difficult. As an
aid we refer to thetime stampof a value as the depth in the DAG at which it is computed,
and then find upper bounds on the time stamps of the results to determine the depth of
the computation.

The model, as defined here, is basically the PSL (Parallel Speculativeλ-Calculus)
[23], augmented with arrays as in NESL [10]. Although the PSL only considered the
pureλ-Calculus with arithmetic operations, the syntactic sugar we include affects work
and depth by a constant factor only. In this paper we are actually assuming a slightly
simplified model by considering only a first-order language (it cannot pass functions)
since we do not need the more general case. We also explicitly mark where futures are
to be created, while in the PSL model all expressions are implicitly made into futures.

3. Pipelining Applications

In this section we show four applications that use pipelining to reduce the depth of the
algorithms. The first three applications require a dynamic pipeline because the time at
which data becomes available for the next task in the pipeline varies from task to task. The
last application is sychronous and the pipeline depth can be fixed. For each application
we give the parallel algorithm, explain how to modify the algorithm to pipeline the
computation, and give an analysis of the depth.

3.1. Merging Binary Trees

The first algorithm we discuss is a simple divide-and-conquer algorithm that takes two
binary treesT1 andT2, where the keys in each tree are unique and sorted when traversed
in-order, and merges them into a new sorted binary tree,Tm. The code is shown in
Figure 3. The functionsplit (s, T) splits a treeT into two trees, one with keys less
than the splitters and one with keys greater than or equal tos. The function traverses a
path down to a leaf, separating subtrees based on the splitter to form the two result trees
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Fig. 3. Code for merging two binary search trees and a corresponding figure. The shaded regions are keys
that are greater than the key at the root ofT1.

(see Figure 3). It requires work that is at most proportional to the depth of the tree. The
functionmerge makes the root ofT1 the root of the result treeTm and splitsT2 by the
key at the root ofT1. It then callsmerge recursively twice to make the left and right
subtrees.

The code is a natural sequential implementation for merging two binary trees, if
we exclude the futures. Futures provide two forms of parallelism. First, they provide
parallelism by allowing the two recursivemerge functions to execute in parallel. IfT1 is
balanced and of sizen, then themerge will be called recursively to a depth ofO(lg n). If
T2 is also balanced and of sizem, then the split operation hasO(lg m) depth. Therefore,
the overall depth of the algorithm is easily bounded byO(lg n lg m). Second, and more
importantly for this paper, futures provide pipelining by allowing the partial results of
split (i.e., nodes higher in the tree) to be fed into the twomerge calls, thereby allowing
for the overlap in time of multiple split calls at different levels of the recursion tree. With
such pipeliningmerge has depthO(lg n+ lg m).

To illustrate how the algorithm pipelines, we consider the time (depth in the DAG) at
which all nodes of the result trees,(L2, R2) = split (v, T2), are computed. If the roots
of both L2 and R2 are created in constant time, and each child at a constant time after
its parent, it is not hard to see that the algorithm would pipeline withinO(lg n+ lg m)
depth. The problem, however, is that one root may only be ready after a considerable
delay. For example, in Figure 3 the root ofL2 is ready only after traversing five nodes
in T2. In addition, there may be further delays at lower levels of the tree. For example,
there is a delay going from nodea to nodeb in R2; b is created only after four nodes
of L2 have been created. In general, the rightmost path ofL2 and the leftmost path of
R2 are made from the nodes ofT2 thatsplit traversed, and the time stamp for a node
in these paths is proportional to its depth inT2. These delays can accumulate when one
split is pipelined into the next. To prove the bounds, however, we show that when there
is a delay there is a corresponding decrease in the depth of the result tree.
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Theorem 3.1. Merging two balanced binary trees of size n and m,m < n, with keys
sorted in-order takes O(lg n+ lg m) depth and O(m lg(n/m)) work.

Proof. Given in the next section. It is a simplification of the proof for taking the union
of two treaps.

A problem with the merge algorithm described is that even though the input trees
may be balanced the resulting merge tree may have depth up to lgn + lg m. We now
briefly describe how using pipelining, again, the unbalanced result can be balanced with
O(lg n + lg m) depth andO(n + m) work. First, the algorithm makes a pass through
the tree computing the size of every subtree, which it stores at the root of the subtree.
From the size data it next finds the rank of each node (its in-order index). Both steps
takeO(lg n + lg m) depth andO(n + m) work and do not require pipelining. Next, it
rebalances the tree using a parallel pipelined algorithm similar tomerge . However, this
time it uses a split operation (similar tosplitm in the next section) that takes a rank
argument and splits the tree into nodes with rank less than the argument and nodes with
rank greater than the argument. It returns these two trees along with the node with equal
rank. The rebalancing algorithm takes four arguments: a tree, a rank, and the number
of lesser and the number of greater rank nodes in the tree. It calls this split operation
on the tree and the rank. It uses the node returned by the split operation as the root and
then recursively balances the two subtrees. The recursive call for the left (right) subtree
supplies a rank that is the old rank minus (plus) half the lesser (greater) subtree size.
The analysis of the depth of the algorithm is similar to the analysis ofunion in the next
section.

3.2. Treap Union

Treaps [29] are balanced search trees that provide for search, insertion, and deletion of
keys and can be used for maintaining a dynamic dictionary. Associated with each key in a
treap is a random priority value. The keys are maintained in-order and the priority values
are maintained in heap order, thus the name treap. The key with the highest priority is the
root of the treap. Because the priorities are random, this key is a randomly chosen key.
Similar to quicksort recursion depth, treaps, therefore, have an expected depth ofO(lg n)
for a tree withn keys. Treaps have the advantage over other balanced tree techniques
in that they allow for simple and efficient union. As we will see, they have the added
advantage that it is easy to parallelize them.

We present two pipelined parallel operations on treaps—aunion operation that
takes the union of two treaps and can be used to insert a set of keys into a treap; and a
differenceoperation that removes the values in one treap from another and can be used
to delete a set of keys. Figure 4 shows the code for finding the union of two treaps. It
is similar to merge in the previous section except that it removes any duplicate values
and maintains the treap conditions so that the result treap is balanced. It uses a modified
split operation,splitm , where the splitter can be a key in the treap. When the splitter
is in the treap,splitm excludes it from the resulting treaps and returns it along with
the two split treaps. Otherwise, it simply returns the two resulting treaps. Notice that
splitm completes as soon as it finds the splitter in the treap.
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Fig. 4. Code for treap union.

To maintain the heap orderunion makes the root with the largest priority the root
of the result treap (compare withmerge , which always uses the root of the first tree).
To maintain the keys in-orderunion splits the treaps by the key value of the new root.
For one treap these are trivially the left and right children of the root. For the other treap
the algorithm usessplitm with futures. It then recursively finds the union of the two
treaps that have keys less than the root, and finds the union of the two treaps that have
keys greater than the root. We show that the expected depth to find the union of two
treaps of sizen andm is O(lg n+ lg m). Without pipelining the expected depth would
be O(lg n lg m).

To analyze the depth of the algorithm we consider time stampst (v) for each node
v of a tree. Thetime stampof a node is the depth in the DAG at which the node is
created. For a treeT we use the notationv ∈ T to be a node inT , h(v) to indicate the
height of the subtree rooted at the nodev (longest path length to any of its leaves), and
l (v) andr (v) to indicate the left and right children of the nodev, respectively. We use
t (T), h(T), l (T), r (T) to meant (v), h(v), l (v), r (v), respectively, wherev is the root
of T .
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Definition 1. A τ -value isvalid if, for all v ∈ T , t (v) ≤ τ + ks(h(T)− h(v)), where
ks is a constant.

A τ -valueof a tree is some value that places an upper bound on each of the time
stamps in the tree depending on the height of the subtree at the node. This definition
means thatτ ≥ maxv∈T {t (v)− ks(h(T)− h(v))}. Theseτ -values capture a relationship
between the height of subtrees and their time stamps which is important for the proofs
of our time bounds. Notice, for example, that aτ -value places the same upper bound on
the time stamps for all leaves in the tree regardless of how far down they are in the tree.
In the following theorem we show that, for each result treap ofsplitm , we can find
a validτ -value that depends only on the result treap height, the input treap height, and
the input treap’sτ -value. In the analysis ofunion we keep track of theτ -values of the
input treaps to recursive calls to bound the time stamps in these treaps.

Property 3.2. If τ is a validτ -value for a treeT , then a validτ -value for a subtree
T ′ is

τ + ks(h(T)− h(T ′)).

Property 3.3. If τl andτr are validτ -values forl (T) andr (T), respectively, then a
valid τ -value forT is

max{t (T), τl − ks, τr − ks}.

Lemma 3.4(Splitm τ -Values). Consider any split value s and any treap T with
associatedτ -valueτ and let ks be the time between two successive recursive calls to
splitm . If we call thesplitm (s, T) function at a time t, then, for each of the two
results T′ ∈ {L ′, R′}, a validτ -value for T′ is τ ′ = max{t, τ } + ks(1+ h(T)− h(T ′)).

Proof. We assume that the splitter does not appear in the treap since this is the worst
case (if the splitter is found, then the split will return earlier). We use induction on the
height of the input treap. The lemma is clearly true whenh(T) = 1. Assume it is true
for treaps of height less than or equal toh − 1. We show it is true whenh(T) = h.
Let L = l (T) andR = r (T). Without loss of generality, assume thats is less than the
key at the root ofT , and let(L1, R1) = splitm (s, L) (see Figure 5). First, we find a

Fig. 5. Split of treapT into L ′ andR′. The shaded areas are keys that are greater than the splitter.
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valid τ -value for the greater than result treap,R′, by finding the time stamps for all its
nodes. Consider the root ofR′. Once the root ofT is availableunion can obtainRandL,
which may be futures, compare the key at the root withs, and callsplitm , which returns
immediately since it returns three futures. Thus,union has all the information needed
to create the root ofR′ in constant time,ks, andt (R′) = max{t, t (T)} + ks. Because
r (R′) = R, a validτ -value forr (R′) is τ + ks(h(T)− h(r (R′))) by Property 3.2. Next
we find upper bounds of the times inL1 andR1.

The recursive call tosplitm on L can be called at time max{t, τ } + ks and, by
Property 3.2, a validτ -value forL is τ + ks(h(T)− h(L)). Therefore, by the induction
hypothesis a validτ -valueτ ′′ for the resulting treapT ′′ ∈ (L1, R1) is

τ ′′ = max{max{t, τ } + ks, τ + ks(h(T)− h(L))} + ks(1+ h(L)− h(T ′′))
≤ max{t, τ } + ks(1+ h(T)− h(T ′′)). (1)

Sincel (R′) = R1, by Property 3.3, a validτ -value forR′ is

τ ′ = max{max{t, t (T)} + ks, τ + ks(h(T)− h(r (R′))− 1),

max{t, τ } + ks(h(T)− h(l (R′)))}
≤ max{t, τ } + ks(1+ h(T)− h(R′)).

Finally, sinceL ′ = L1, aτ -value ofL ′ is aτ -value forL1 as given in (1).

Note thatunion creates new treaps by only dividing a treap into its left and right
children or by running thesplitm operation on it. Given the above lemma, we can find
τ -values for the treaps in all the recursive calls, and use theseτ -values to find upper
boundst̂(v) for t (v), the time stamps on the nodesv of the union result treap.

Theorem 3.5(Depth Bound on Union). Consider two treaps T1 and T2 with τ -values
τ1 andτ2. If we call union (T1, T2) at time t, then the maximum time stamp on any of
the nodes of the result Tm will be max{t, τ1, τ2} + O(h(T1)+ h(T2)).

Proof. Once the two roots ofT1 andT2 are ready,union can compare their priorities,
start upsplitm and the two recursiveunion s, and create the root of the result treapTm

with pointers to the futures for its two children. This all takes constant time,km, because
splitm andunion are called with futures. Thus,t (Tm) ≤ km + max{t, τ1, τ2}. This
upper boundkm+max{t, τ1, τ2} on the time stamp of the root of the result treap will be
referred to aŝt(Tm).

We now calculatêt(l (Tm)), an upper bound on the time stamp of the left child of
the root of the result treap, in terms oft̂(Tm). Consider the two treapsTl

1 andTl
2, which

are the inputs to the left call tounion , andTl
m = l (Tm), which is the result of the call.

Without loss of generality consider the case when the priority ofT1 is greater than the
priority of T2. ThenTl

1 = l (T1) andTl
2 is the left result ofsplitm (k1, T2), wherek1

is the key at the root ofT1, see Figure 6. Due to the previous bound on thesplitm
operation, aτ -value forTl

2 is

τ l
2 = max{t (Tm), τ2} + ks(1+ h(T2)− h(Tl

2))

≤ t̂(Tm)+ ks(1+ h(T2)− h(Tl
2))
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Fig. 6. Union of treapsT1 andT2 into Tm, when the priority at the root ofT1 is greater than the priority at the
root of T2. T2 is split byk1, the key at the root ofT1. The subtreapTl

m is the union of the subtreaps with keys
less thank1 (not shaded) and the subtreapTr

m is the union of the subtreaps with keys greater thank1 (shaded).

By Property 3.2, aτ -value forTl
1 is

τ l
1 = τ1+ ks(h(T1)− h(Tl

1))

< t̂(Tm)+ ks(h(T1)− h(Tl
1)).

These, along with the condition at the beginning of the proof, give an upper bound on
the time stamp ofTl

m:

t (Tl
m) ≤ km +max{t (Tm), τ

l
1, τ

l
2}

≤ t̂(Tm)+ km + ks max(h(T1)− h(Tl
1),1+ h(T2)− h(Tl

2)).

That is, the only way the bound on the time stamp of a child can bekm + δ · ks more
than its parent’s bound is by a corresponding height decrease of eitherδ in the depth of
T1 or δ− 1 in T2. Becauseunion removes the root ofT1, δ ≥ 1. We can show the same
bound forr (Tm).

Now consider a path inTm from the root to a leaf. Let1i = t̂(c)− t̂(v), wherec is a
child ofv andv is a node at depthi −1. Lethi

j , j = 1,2, be the height of the input treaps
of the union that createdc. From the above discussion andj = 1(2) andk = 2(1),

1i ≤ km + ks max(hi−1
j − hi

j ,1+ hi−1
k − hi

k)

≤ km + ks(h
i−1
1 − hi

1+ hi−1
2 − hi

2+ 1). (2)

Since the algorithm terminates whenever one of the input treaps has height 0, and the
height of at least one of the treaps decreases by one for each recursive call, the depth of
the recursion treap is at mostO(h(T1)+h(T2)). Therefore, the total increase in the bound
on the time stamps along the path to any new node is

∑
1i ≤ (km+2ks)(h(T1)+h(T2)).

Since the time stamp on the root is bound bykm +max{t, τ1, τ2} and the path bound is
true for all paths, this bounds the time stamp on any new node inTm by max{t, τ1, τ2} +
O(h(T1)+ h(T2)). The untouched nodes are also clearly similarly bounded.

Corollary 3.6 (Expected Union Depth). Theexpecteddepth tofind theunion two treaps
of size n and m is O(lg n+ lg m).
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Proof. We assume that the treaps are “ready” whenunion is called at timet . That is,
the treaps have validτ -values,τ1 andτ2, with τ1 < t andτ2 < t . Since the expected
heights of the two treaps isO(lg n) and O(lg m) [29], the expected depth to find the
union isO(lg n+ lg m).

Theorem 3.7. The expected work to meld two treaps of size n and m,m < n, is
O(m lg(n/m)).

Proof. See [11].

We now return to the proof of depth on the merge computation described in the
previous section.

Proof of Theorem3.1. The proof for the depth bound on merge is the same as for the
depth bound on union, except that we do not need to consider the case whenT1 is split.
Thus, in (2), j = 1 andk = 2. Sinceh(T1) = lg n andh(T2) = lg m, to merge the
two trees takesO(lg n+ lg m) depth. The proof for the work bound for merge is easier
than for union because the input trees are balanced. Union requires an expected case
analysis.

3.3. Treap Difference

The inverse operation to taking the union of two treaps is taking their difference; remove
any keys from the first treap that appear in the second treap. Thediff algorithm is,
again, quite simple and uses two operationssplitm (shown previously in Figure 4) and
join (shown in Figure 7). Thejoin operation is the inverse ofsplit —it takes two
treaps,T1 andT2, where the largest key inT1 is less than the smallest key inT2, and joins
them into a single treap,T ′. A join only requiresO(h(T1) + h(T2)) work since it need
only descend the rightmost path ofT1 and the leftmost path ofT2, interleaving the nodes
depending on their associated priorities.

The functiondiff takes two treaps,T1 andT2, and returns a treapTd which isT1

with any keys inT2 removed. First, it callssplitm on T2 and the key at the root of
T1 as the splitter to obtain two treaps,l2 andr2, and possibly the splitter. Next,diff
recursively finds the difference ofl (T1) andl2 and the difference ofr (T1) andr2. If the
root key ofT1 was not inT2 the results of the recursive calls become the left and right
branches of the root. Otherwise, the root and its subtreap is replaced by the join of the
two treaps resulting from the recursive calls. As inunion , without pipelining it takes
O(h(T1)h(T2)) depth to descend to the bottom of the recursion call tree. On the way back
up, a path may contain as many as min(h(T1),m) nodes to delete, wherem is the size of
T2. Each such node can addO(h(Td)) depth due to the requiredjoin . Thus, the overall
depth fordiff not considering pipelining isO((h(T1)h(T2)+ h(Td)min(h(T1),m)).

The pipelining fordiff is notably different from the pipelining forunion because
the algorithm requires work after the recursive calls (the join) as well as before them
(the split). The pipelining while descendingT1 is much like the treemerge , except
no actual merging takes place and, therefore, that part of the computation DAG has
O(h(T1)+ h(T2)) depth. We next show that the ascending phase of the algorithm takes
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Fig. 7. Code for taking the difference of two treaps.

O(h(T1) + h(Td)) depth. First we show the worse-case time stamps on the results of a
join . Then we show the worse case time stamps on the final result treap. We use the
same definitions as in Section 3.2, except we replaceτ -values with a similar concept of
ρ-values.

Definition 2. Let dT (v) of a nodev ∈ T be the depth of the node in the tree, such that
thedT (T) = 0, dT (l (T)) = dT (r (T)) = 1, . . . . A ρ-value isvalid for a treeT if, for all
v ∈ T , t (v) ≤ ρ + kdT (v), wherek is a constant.

That is, avalid ρ-value for a treeT defines upper bounds for the time stamps of
the tree, namely for allv ∈ T , t (v) ≤ ρ + kdT (v), wherek is a constant. In contrast to
τ -values,ρ-values are independent of the heights of the subtrees.

Property 3.8. If ρ is a validρ-value forT , thenρ is a validτ -value forT .

Property 3.9. If τ is a validτ -value forT , thenτ +kh(T)−2 is a validρ-value forT .

Lemma 3.10(join ρ-Values). If join is called at time t on two treaps T1 and T2

with valid ρ-valuesρ1 and ρ2, then a validρ-value for the resulting joined treap T′

is ρ ′ = max{t, ρ1, ρ2} + k, where k is a constant at least as large as the maximum
computation DAG depth between successive recursive calls tojoin .

Proof. We find upper bounds of the time stamps of each node of theT ′ by induction on
the size ofT ′. Letn be the size ofT ′. The lemma is clearly true when the size of the result
treap is 1. Assume it is true for result treaps of sizen− 1. We show it is true for result
treaps of sizen. Sincejoin can test the root priorities, receive a pointer to the future
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Fig. 8. Join of treapsT1 andT2 into T ′, when the priority at the root ofT1 is greater than the priority at the
root of T2.

which is the result of the recursive call tojoin , and create the root node ofT ′ in constant
depthk, once the roots ofT1 andT2 are ready,t (T ′) = max{t, ρ1, ρ2}+k. Call this value
ρ ′. Without loss of generality, assume that the priority of the root ofT1 is greater than the
priority of the root ofT2 (see Figure 8). Becausel (T1) = l (T ′), then, for allv ∈ l (T ′),
t (v) ≤ ρ1 + kdT1(v) ≤ ρ ′ + kdT ′(v), since the depth ofv is the same inT1 as inT ′.
By the induction hypothesis we can find the time stamps onr (T ′) = join (r (T1), T2),
since the size ofr (T1) is less thann. A valid ρ-value forr (T1) is ρ1 + k. Therefore a
valid ρ-value forr (T ′) is max{ρ ′, ρ1+ k, ρ2} + k = ρ ′ + k. Sincev’s depth inr (T ′) is
one less than its depth inT ′, t (v) ≤ ρ ′ + kdT ′(v) for all v ∈ r (T ′). Thus,ρ ′ is a valid
ρ-value forT ′.

Theorem 3.11(Bound on Difference Depth). If diff (T1, T2) is called at time t and
valid ρ-values for T1 and T2 areρ1 andρ2, then the maximum time stamp on the result
treap Td is max{t, ρ1, ρ2} + O(h(T1)+ h(T2)+ h(Td)).

Proof. Let k be a constant greater than the maximum computational DAG depth be-
tween successive recursive calls tosplitm , join , anddiff . Sinceρ1 andρ2 are valid
τ -values forT1 and T2, by Property 3.8, and using the same arguments as in Theo-
rem 3.5, after max{t, ρ1, ρ2} + O(h(T1)+ h(T2)) depth in the computation DAG,diff
has reached the bottom of every recursive path (either lines 9 or 10 in Figure 7 applies)
and every future result ofsplitm has been computed. Thus, by Property 3.9 there exists
a constantρ ′ = max{t, ρ1, ρ2}+O(h(T1)+h(T2)) which is a validρ-value for all trees
(treapsl andr on lines 13 and 14) that are the result of these calls at the leaves of the
call tree. At this point we can findρ-values for the results of each recursive call todiff .
Let ρl andρr be validρ-values for the results treapsl and r . Because the recursive
calls todiff are called with futures, the call tojoin is always made by max{ρl , ρr }.
By Lemma 3.10 a validρ-value for result of thediff recursive call is max{ρl , ρr } + k
(compare with the definition of the height of a tree). However, since all the result treaps
at the leaves of the recursive call tree haveρ ′ as a validρ-value and the height of the
recursive call tree is no more thanh(T1), a validρ-value for the treap at the root of the call
tree must beρ ′ + kh(T1). By definition ofρ-values, the time stamp of the deepest node
in that treap isρ ′ +O(h(T1)+h(Td)) = max{t, ρ1, ρ2}+O(h(T1)+h(T2)+h(Td)).

Corollary 3.12 (Expected Difference Depth).The expected depth to find the difference
of two treaps of size n and m is O(lg n+ lg m).

Proof. Since the expected height of the two input treaps areO(lg n) andO(lg m) and
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Fig. 9. The DAG for anarray split on an array of length 11.

the expected height of the result treap isO(lg(n −m)), the expected depth to find the
difference isO(lg n+ lg m).

3.4. 2-6 Trees

We can obtain a pipelined variant of top-down 2-3-4 trees using 2-6 trees. It is analogous
to the bottom-up pipelined 2-3 trees of PVW [28]. Each node of a 2-6 tree has one to five
keys in increasing value and one child for each range defined by the keys. The children
are 2-6 trees with key values within their range. Every key appears only once, either in
internal nodes or at the leaves, and all leaves are at the same level. We refer to the keys
in the tree assplitters.

We consider the problem of inserting a set of sorted keys into a 2-6 tree. For this
problem we use an array primitivearray split , which splits a sorted array of sizem
into two arrays, one with values less than the splitter and one with values greater than
the splitter. In our cost model we define this operation to haveO(1) depth andO(m)
work—in the DAG we view the operation as a DAG of depth 2 and breadthm (see
Figure 9).2 First we consider inserting an ordered set of keys in which there is at least
one key in the 2-6 tree between each pair of keys to be inserted. We call such an array a
well-separatedkey array. Later, we show how to insert any ordered set of keys.

If the root of the 2-6 tree has more than three children, the algorithminsert splits
the root into two 2-3 nodes (nodes with two or three children) and creates a new root
using the “middle” splitter and these new 2-3 nodes as children. From now oninsert
maintains the invariant that the root of the tree into which it is inserting is a 2-3 node.
It does so by always splitting any child, as necessary, before applying a recursive call
on that child. Every time it splits a child it needs to include one of the child’s splitters
into the root. However, since the root has at most two splitters and three children (by the
invariant), the resulting root will have at most five splitters and six children.

To insert an ordered well-separated key array,insert first splits the keys by the
smallest splitter at the root into two arrays using thearray split primitive. It will
insert the first of the two arrays into the left child. If there is no second splitter, it will
insert the second key array into the right child. Otherwise, it splits the second array by the
second splitter and will insert the resulting key arrays into the middle and right children.

2 The reader might argue that the split operation should have depth greater thanO(1) because of the
need to collect the two sets of values. We show in Section 4, however, that the cost of thearray split is
fully accounted for in the implementation.
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Fig. 10. Inserting an ordered set of keys into a 2-6 tree of sizen. The array (items enclosed in angle brackets
〈 〉) at the root of a tree is the well-separated key array to be inserted in the tree. First insert the median<m>into
the tree (dark shading). Next insert the first and third quartile<g,r> into the resulting tree (medium shading).
Then insert the next well-separated array into the next resulting tree (light shading) and so on. Inserting each
well-separated key array takesO(lg n) depth.

Before recursively inserting a key array into a child,insert first checks whether the
child needs to be split to maintain the 2-3 root node invariant. When a child is split, it
obtains a new splitter and two new children. It uses the new splitter to split the key arrays
into two arrays that it will insert into the two new children. Next it recursively inserts the
key arrays into the appropriate children to obtain new children for the root. Eventually,
insert will reach a leaf node, which must be a 2-3 node by the invariant. Because of
the requirement that there is always at least one key in the 2-6 tree between each key to
be inserted, there can be at most three keys that need to be inserted in any one leaf; these
keys can be included in the leaf without having to split the node. Note that the height of
the tree increases by at most one, when the root of the tree was split.

If insert uses futures when making its recursive calls, then it traverses the different
paths down the tree in parallel by forking off new tasks for each recursive call. Since the
paths are at most lgn long, inserting an ordered well-separated key array of sizem into
a 2-6 tree of sizen takesO(lg n) depth andO(m lg n) work. No pipelining is needed.

To insert an arbitrary ordered set of keys of sizem, insert first forms a balanced
binary tree of the keys (conceptually), and then creates a list of arrays of keys, where
each array is made up of the keys from one level of the tree. Thus, the first array contains
the median key, the next array contains the first and third quartiles, and so on. It then
successively inserts each array into the 2-6 tree using the tree returned by the previous
insertion, see Figure 10. By inserting the keys in this manner,insert guarantees that
for any array of keys, there is at least one key in the 2-6 tree between each pair of keys in
the array, because it has inserted such keys previously. Without pipelining, inserting the
lg m arrays into a tree of sizen would requireO(lg n lg m) depth andO(m lg n) work.

By simply making the recursive call that inserts a well-separated key array return
a future (in addition to the futures used in its recursive calls),insert can pipeline
inserting each array of keys into the 2-6 tree—no other changes to the code need to be
made. The crucial fact that makes the pipelining work is that, in constant depth,insert
can return the root node with its keys values filled in, although its children may be
futures, see Figure 11. It can then insert the next well-separated key array in the list into
this new root, which is the root of the 2-6 tree that will eventually contain the original
and previous well-separated key arrays. With this structural information in the root the
next insertion can also return the root in constant depth. Although it may need to wait
a constant depth before the children nodes are ready, from then on the children of all
descendants will be ready when it reaches them. In this way there can be an array of
keys being inserted at every second level and possibly every level of the 2-6 tree.
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Fig. 11. Inserting an ordered set of keys into a 2-6 tree of sizen using pipelining. An array (items enclosed
in angle brackets〈 〉) at the root of a tree is the well-separated key array to be inserted in the tree and refers to
a future in the computation. (a) First, the median<m> is inserted into the original tree (dark shading). (b) As
soon as the root node of the resulting tree is ready (medium shading), the first and third quartile<g,r> are
inserted into it. The root is ready inO(1) depth. The median<m>still needs to be inserted into a child of the
original tree root (dark shading), the result of which is a future. When the future value is available it becomes
a child in the second result tree (medium shading). (c) The next well-separated array is inserted into the next
resulting tree (light shading) and so on.

Definition 3. γ is a validγ -value for a 2-6 treeT if, for all v ∈ T , t (v) ≤ γ +kbdT (v),
wheret (v) is the time stamp forv,dT (v) is the depth ofv in T , andkb is constant.

Theorem 3.13(Insertion into a 2-6 Tree). A set of m ordered keys can be inserted in
a 2-6 tree of size n> m in O(lg n+ lg m) depth and O(m lg n) work.

Proof. First note that we can create a pipeline of well-separated key arrays from an
arbitrary array of sorted keys. Each successive well-separated key array can be found
in constant time,kw, given the indices of the keys that made up the previous key array.
That is, the time stamp for thei th key array iskw · i . Let T0 be the original 2-6 tree we
are inserting into, and letγ0 be its associated validγ -value. LetTi be the resulting 2-6
tree after inserting thei th well-separated key array intoT0. We will show that

γi+1 = γi + 3kb (3)

are validγ -values forTi+1, i = 0, . . . , lg m.3

Assumeγi is a validγ -value forTi andkb is large enough such thatγi > (i +1)kw.
The insert function can start to insert the(i + 1)st well-separated array once both it
and the root ofTi are available; that is, at time min((i + 1)kw, γi ) = γi . In the worse
case the root ofTi needs to be split. It can do so in constant depthkr , since it has all
the structural information it needs to create the new root and its two children. Again we
assumekb is large enough such thatkb > kr . This splitting results in a new intermediate
treeT ′i , with a validγ -valueγi + kb. By induction ond we will find upper bounds on
the time stamps of nodes at depthd of Ti+1.

First we findt (Ti+1). Once the root ofT ′i or Ti and its children are availableinsert
can do all the work necessary to create the root ofTi+1. These nodes have time stamps
at mostγi + 2kb. Then, in constant depth,insert can split the keys, determine which

3 It is also possible to show thatγi+1 = γi + 2kb
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children need to be split, determine any new keys and children that need to be added
to the root ofT ′i , split the key arrays by the new keys, and proceed with the recursive
calls, which return futures to the children of the new root. Let this constant depth be
kb. Thus, it has the structural information needed to create and return the root so that
t (Ti+1) = γi + 3kb. The recursive calls on nodes at depth 1 ofT ′i are made byγi + 3kb

and these nodes and their children have time stamps no more than that. Therefore, by
γ +4kb it can create the nodes at depth 1 ofTi+1 and proceed with the recursive calls on
nodes at depth 2. In general, the recursive call on nodes at depthd occur byγi +(d+2)kb

and the nodes ofT ′i at leveld and leveld + 1 are also available at that time. Thus, the
time stamps for a node at leveld of Ti+1 is at mostγi + (d + 3)kb, proving (3) holds.
Since there are lgm well-separated key arrays, the final 2-6 tree has a validγ -value
γ + O(lg m) and the tree has depthO(lg(m+ n)). Therefore, the largest time stamp is
no more thanγ + O(lg m+ lg n).

It is easy to see that insertingm keys into a tree of sizen using the above algorithm
does no more work, within constants, than inserting them keys one at a time. Since the
latter takesO(m lg n) work so does the former.

4. Implementation

In this section we describe an implementation of futures and give provable bounds on
the runtime of computations based on this implementation. The bounds include all costs
for handling the suspension and reactivation of threads required by the futures and the
cost of scheduling threads on processors. The implementation is an extension of the
implementation described in [23] which allows us to improve the time bounds and avoid
concurrent memory access.

The main idea of the implementation is to maintain a set of active threadsS, and
to execute a sequence of steps repeatedly, each of which takes some threads fromS,
executes some work on each, and returns some threads toS. The interesting part of the
implementation is handling the suspension and reactivation of threads due to reading and
writing to future cells. As suggested for the implementation of Multilisp [24], a queue
can be associated with each future cell so that when a thread suspends waiting for a write
on that cell, it is added to the queue, and when the write occurs, all the threads on the
associated queue are returned to the active setS. Since multiple threads could suspend
on a single cell on any given time step, the implementation needs to be able to add the
threads to a queue in parallel. Previous work [23] has shown that by using dynamically
growing arrays to implement the queues in parallel, any computation withw work and
d depth will run inO(w/p+ d · Tf (p)) time on a CRCW PRAM, whereTf (p) is the
latency of a work-efficient fetch-and-add operation onp processors.

By placing a restriction on the code called linearity, we can guarantee that every
future cell is read at most once so that only a single thread will ever need to be queued
on a future cell. This greatly simplifies the implementation and allows us to replace
the fetch-and-add with a scan operation. A further important advantage of linearity is
that it guarantees that the implementation only uses exclusive reads and writes to shared
memory. The linearity restriction is such that any code can easily be converted to be linear,
although this can come at the cost of increasing the work or depth of an algorithm.
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Fig. 12. Linearized code for splitting two binary trees. Two copies ofs andv are made so that no variable is
referenced more than once. A variable that is referenced once in thethen clause and once in theelse clause
of an if statement is referenced once overall because only one of the two clauses is executed. Similarly a
variable must be referenced at most once in each function body.

The linearity restriction on code is based on ideas from linear logic [22]. In the
context of this paper linearizing code implies that whenever a variable is referenced
more than once in the code a copy is made implicitly for each use [26]. The copy must
be a so-called deep copy, which copies the full structure (e.g., if a variable refers to a
list, the full list must be copied, not just the head).4 Linearized code has the property
that at any time every value can only have a single pointer to it [26]. This implies that
there can only be a single pointer to a future cell and it can therefore only be read from
once. Similarly it implies that there can only be exclusive read access to any value, even
if it is not a future cell. Linear code has been studied extensively in the programming
language community in the context of various memory optimizations, such as updating
functional data in place or simplifying memory management [26], [31], [4], [1], [18].

Linearizing code does not affect the performance of any of the algorithms we con-
sidered in this paper. For example, consider the body of thesplit code in Figure 3,
lines 4–11. Figure 12 shows the linearized version of the same code. The only variables
that are read more than once refer to keys and splitters (v ands). Since it is no more
expensive to copyv ands than to compare them, such copying does not affect the costs.
The trees themselves are never referenced more than once—although,L andR appear
once each in thethen or theelse part of theif statement, only one of these branches
can be executed. The treesL1 andR1 appear twice in boththen andelse parts, but one
case is simply defining them (lines 7 and 11) while the other actually references them
(lines 8 and 12).

We now consider the main result of this section. Here we state the bounds in terms
of the EREW scan model [6], which is the EREW extended with a unit-time plus-scan

4 Note that to copy the structure, the copy must be strict on the full structure—all futures must be written
before they can be copied.



234 G. E. Blelloch and M. Reid-Miller

(all-prefix-sums) operation. The bounds we prove on the scan model imply bounds of
O(w/p + d lg p) time on the plain EREW PRAM,O(gw/p + d(Ts + L)) on the
BSP [30], andO(w/p+d lg p) on an asynchronous EREW PRAM [20] using standard
simulations.

Lemma 4.1(Implementation of Futures).Any linearized future-basedcomputationwith
w work and d depth can be simulated on an EREW scan model in O(w/p+ d) time.

Proof. In the following discussion we say that an action (node in the computation DAG)
is readyif all its parents have been executed and that a thread isactiveif one of its actions
is ready. We store threads asclosures, which are fixed-sized structures containing a code
pointer and pointers to a constant number of local variables. We store each future cell
as a structure that holds a flag and a pointer. Initially the flag is unset; when the pointer
is filled the flag is set. The pointer points to either a value or a suspended thread (i.e., its
closure).

We store the set of active threads in an arrayS. The algorithm takes a sequence of
steps, where each step takesm = min{|S|, p} threads fromS, executes one action on
each thread, and returns the resulting active threads toS. We treat the arraySas a stack
so that threads are removed from and added to the top of the stack. Lett be the stack top
such that the active threads are stored inS[0], S[1], . . . , S[t ].

To take threads fromS:

1. Removem threads from the top ofS. That is, processori takes threadS[t − i ],
unlesst − i < 0, in which case it does nothing on this step.

2. Decrement the stack top bym (t = t −m).

The above operations take constant time.
Next we show that each action takes constant time. After executing one action, each

thread can return zero, one, or two active threads toS (zero if it terminates or suspends,
one if it continues, and two if it forks or reactivates another thread).

1. If a thread with a read pointer to a future cell wants to read the future, then
• if the future cell has been set, then dereference the pointer (return one thread),
• otherwise set the flag, write a pointer to the thread’s closure into the future

cell, and suspend (return zero threads).
2. If a thread with a write pointer to a future cell wants to write a result, then
• if the future cell has been set, then read the future cell, which has a pointer to

the closure of the thread suspended on that cell, write a pointer to the result
into the future cell, and reactivate the suspended thread (return two threads),
• otherwise write a pointer to the result into the future cell and set the future

cell’s flag (return one thread).
3. If a thread wants to fork a new thread, then

(a) create a closure for the forked thread,
(b) create future cells for each result to be returned by the forked thread,
(c) write pointers to the future cells in the forking thread’s closure (for reading)

and the forked thread’s closure (for writing), and
(d) activate the forked thread (return two threads)
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4. Otherwise execute the action (return one thread if it continues and zero threads
if the thread terminates).

To prevent both the writer and reader from accessing the flag concurrently we can
assign even steps to the reader and odd steps to the writer.5 Thus, reading from and
writing to a future cell takes constant time; forking a new thread takes constant time
because closures are fixed sized and the number of new future cells created is contant;
and by definition of the DAG in our model, actions not involving a future cell or forking
take constant time.

To return active threads toS:

1. Compute the plus-scan of the number of active threads each processor returns.
2. If a processor receives scan resultj , then it places its zero, one, or two active

threads onSstarting atS[t + j + 1].
3. Increment the top of the stack byk, the total number of threads added toS

(t = t + k).

Since each processor has at most two threads to return toS, the implementation can place
the threads back inS in constant time using the unit-time plus-scan primitive assumed
in the machine model. The above assumes that unbounded space is allocated forS. It is
possible to allocate bounded space forS, in the same manner as in [23], and still place
threads back onS in constant (amortized) time.

In summary, since the algorithm can remove min{|S|, p} threads from the top ofS
in constant time, can execute one action of each thread in constant time, and can place
resulting active threads back onS in constant time, the whole step takes constant time.
Since, on each step, the implementation processes min{|S|, p} threads, andS holds all
the active threads (by definition), the implementation executes a greedy schedule of the
computation DAG. The number of steps is therefore bounded byw/p+ d [12] and the
total time byO(w/p+d). Note that for the time bounds it does not matter which threads
are taken fromS on each step, allowing the implementation some freedom in selecting
a schedule that is space or communication efficient. The stack discipline we describe
above, however, is probably much better for space than a queue discipline.

We now outline how to handle thearray split operation used in the 2-6 trees.
We first consider implementing a simplerarray scan which, given an array of integers
of lengthn, returns the plusscan of the array inO(n) work andO(1) depth (remember
that n could be much larger thanp). As with thearray split we account for the
cost of thearray scan in our cost model as a DAG of depth 2 and breadthn. When
coming to anarray scan in the code the implementation spawnsn threads and places
them in the set of active threads. Since creatingn threads could take more than constant
time on p processors, they are created lazily using a stub as described in [8]—threads
are expanded when taken fromS instead of when inserted. For each block ofp or less
threads that are scheduled from the set in a particular step, we can use the unit-time scan
primitive assumed in the machine model to execute the scan across that subset and place
the new running sum back into the stub. When the last thread finishes, it reactivates the
parent thread and the scan is complete. If we associate each created thread as a node

5 A test-and-set operation will suffice, but we do not have such an operation in an EREW PRAM.
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in the breadthn DAG, then each node of this DAG can be executed in constant work,
and the sink node (bottom node of the 2× n DAG) is ready as soon as the last thread
is done. Since the schedule remains greedy (on each step the implementation always
schedules min{|S|, p} threads), the number of steps is bounded byO(w/p+ d), where
w is now the total number of nodes in the DAG including the expanded DAGs for each
array scan (i.e., we are includingO(n) work for eacharray scan ). Each step of
the scheduling algorithm still takes constant time so the total time on the EREW scan
model is also bound byO(w/p+ d).

Thearray split can be implemented by broadcasting the pivot, comparing the
array elements to it, executing two scans to determine the final locations of the array
elements, and writing the values to these locations (see [6] for example). Each step can
be implemented withO(n) work andO(1) depth in a similar way as described above.

5. Conclusions

This paper suggests an approach for designing and analyzing pipelined parallel algo-
rithms using futures. The approach is based on working with an abstract language-based
cost model that hides the implementation of futures from the user. Universal bounds for
implementing the model are then shown separately.

The main advantages of our approach over pipelining by hand is that it leaves the
management of pipelining to the runtime system, greatly simplifying the code. The code
we gave for merging and for treaps is indeed very simple, and is just the obvious sequential
code with future annotations added in a few places. We expect that it would be very messy
to pipeline the treaps by hand because of the unbalanced and dynamic nature of the tree
structures. In particular, the depth at which subtrees returned by thesplit function
become available is data dependent, and to maintain the depth bounds an implementation
must start the next computation as soon as a node becomes available. The immediate
reawakening of suspended tasks is therefore a critical part of any implementation. Our
code for the 2-6 trees is somewhat more complicated, but still significantly simpler than
a version in which the pipelining is done by hand.

Another important advantage of the approach is that it gives more flexibility to
the implementation to generate efficient schedules. The algorithms of Cole and PVW
specify a very rigorous and synchronous schedule for pipelining while the specification
of pipelining using futures is much more asynchronous—the only synchronization is
through the future cells themselves and there is no specification in the algorithms of what
happens on what step. This gives freedom to the implementation as to how to schedule
the tasks. The implementation, for example, could optimize the schedule for either space
efficiency [12], [8], [9] or locality [13]. On a uniprocessor the implementation could run
the code in a purely sequential mode without any need for synchronization.

We are not yet sure how general the approach is. We have not been able to show, for
example, whether the method can be used to generate a sort that has depthO(lg n). We
conjecture that a simple mergesort based on the merge in Section 3.1 has expected depth
(averaged over all possible input orderings) close toO(lg n), perhapsO(lg n lg lg n). This
algorithm has three levels of pipelining (i.e., has depthO(lg3 n) without pipelining).

This paper is part of our larger research theme of studying language-based cost
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models, as opposed to machine-based models, and is an extension of our work on the
NESL programming language and its corresponding cost model based on work and depth
(summarized in [7]).
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Appendix. ML Code

All code in this paper is a subset of ML [27] augmented with future notation, a question
mark (?). The syntax we use is summarized in Figure 13. TheLET VAR pattern = exp
IN exp ENDnotation is used to define local variables and is similar to Let in Lisp. The
DATATYPEnotation is used to define recursive structures. For example, the notation

datatype tree = node of int*tree*tree | leaf;

is used to define a datatype calledtree which can either be anode with three fields
(an integer, and two trees), or a leaf.

Fig. 13. The ML syntax used in this paper.
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Pattern matching is used both for pulling datatypes apart into their components
(e.g., separating a list into its head and tail) and for branching based on the subtype. For
example, in the pattern:

fun merge(leaf,B) = B
| merge(A,leaf) = A
| merge(node(v,L,R),B) = .....

the code first checks if the first argument is aleaf type, and returnsB if it is, it then
checks if the second argument is aleaf type, and returnsA if it is, otherwise it pulls the
first argument, which must be anode into its three components (the integerv and the
two subtreesL andR) and executes the remaining code.
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