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ABSTRACT 

We pursue in this paper some of the ideas discussed a year ago at the First Annual 
Symposium on Switching Theory and Logical Design. For a general discussion of threshold 
logic, and for definitions and motivations of the terms used below, the reader is re
ferred to "Single Stage Threshold Logic'! also published in this volume1l', 131. Also, a 
general survey of recent papers in the subject has been published elsewhere t14l • 

The main subject treated below is compound synthesis. The importance of such a 
study was shown last year: The family of functions of n arguments realizable in a 
single stage becomes a vanishing fracti�n o� all switching functions of n arguments as n 
�ows (for n = 7 the ratio is about 102 1/2). We p�ovide an algorithm for determining 

2-realizability" -- realizability with two threshold elements. The general approach 
produces a good solution in any case, but one guaranteed optimal only for 2-realizable 
functions. We use here a geometric terminology; this new language is also used in the 
second section, where "higher" necessary conditions for realizability are discussed. A 
conjecture that certain of these conditions might be sufficient is disproved; three re
lated conditions are treated in a common language. The final section considers optimal 
integral single-stage realizations, and disproves a conjecture made last year: That 
such a realization gives equal arguments equal weights. 

I. COMPOUND SYNTHESIS 

INTRODUCTION 

Various problems of compound synthe
sis can be distinguished, involving various 
restrictions and optimality criteria: 

1. The general problem. Realize a 
given function with a network of fewest 
threshold gates. 

2. The timing problem. As (1), but 
restrict the network to the fewest levels 
(to minimize time delay). 

3. The practical problem. As (l), 
but restrict the network by requiring 
lola \ 6 M a fixed maximum, for each gate 
(to prevent component and signal variations 
from causing errors). 

Other criteria enter with perhaps 
less weight: The loading of the input 
signals should be even, delays used to 
bring input signals to the lower gates in 
the network should be considered, the 
number of gates a given gate feeds may 
need to be restricted, networks with 
regular patterns are easier to manufacture 
and service·. These and the two re
strictions above can be comhined in 
v�ious ways to give a variety of problems. 

Stating criteria and restrictions im
plicitly is very important; see for in
stance the paper of R. C. Minnick t9l, 
where improvements are claimed over re
sults of S. Muroga [10] and are actually 
possible because of a relaxation of con
ditions Muroga failed to make explicit. 
(Namely, that delays be counted, too.) 

Problem (3) has received some at
tention. M. Cohn and R. Lindaman [3,6,71 
treat the case of M = 3, where the gates 
then must all be simple majority gates. 
The author also has some results which 
will be reported elsewhere. Here we wish 
to discuss a first step in the directions 
of problems (1) and (2): We give an ex
plicit algorithm for determining whether 
two threshold gates suffice to realize a 
gi ven function: 

.... ... ..6 f(x) = g(x, hex»� (1) 

where g and h are threshold functions (f 
and h have n arguments, g has n+l). Algo
rithms for the case of one-gate realiza
bility (or simply I-realizability) are well 
known. The most relevant of these, re
ported by the author last year (13] , pro
vides the basis for the 2-realizability 
algorithm to be presented below. The 
philosophy of this approach is: 



In general, we want to realize a 
function as simply as possible. So first 
we try to realize it with one gate (we 
check I-realizability). Ir-this attempt 
fails, we use the data so obtained to try 
with two gates (we check 2-realizability). 
supposing this attempt also fails, then we 
continue to add gates, using the data so 
far collected, until the function is 
finally realized. 

THE GEOMETRIC LANGUAGE 

The following geometric interpreta
tion of algebraic ideas will be useful 
here and in later reports: 

Definition: Given n fixed, and 
X a valuation, then 'Xl is defined as 
a corresponding family of vectors{� 
(in n-space) as follows: Let Y be 
any valuation of all the arguments 
not involved in X (so XY gives values 
to all arguments, and thus defines a 
point on the n-cube). Let [X] be the 
family of all vectors parallel to and 
of the same length as the vector from 
XY to XY; (So the family is inde
pendent of the choice of Y.) 

Definition: A vector, running 
from a point A to a point B in the n
cube, is f-negative when A e f and 
B , f (i.e., A belongs f and B 
doesnlt), f-positive when A i f and 
B e fj all other vectors are !
neutral. 

Definition� A valuation X is f
positive when tXl contains no f-

-

negative vectors, f-negative when [Xl 
contains no f-positive vectors, f
pro?er when it is either f-positive 
or -negative, and otherwise f-im
proler. Any family of vectors is 
slm larly, f-positive, -negative, 
·proper, and -improper according as 
to the vectors it contains. 

These definitions connect back to 
earlier algebraic results (13) as follows: 

Theorem: f is positive in X if 
and only if [Xl is f-positive. f is 
completely monotonic if and only if 
every valuation is f-proper. 

To complete the cycle: This last 
condition requires simply that there be no 
pair of eoual-length, common-direction 
vectors, A -.B and C -.n, such that A 
and D belong to f while B and C do not. 
The argument that complete monotonicity is 

n In this section we shall consider only 
Boolean vectors, vectors whose two end 
points are vertices of the unit cube. 
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a condition necessary for realizability 
should now be clear: f is realizable in 
this language when there is a hyperplane 
separating its pOints from its non-points, 
If ABCD form a parellelogram as above, 
clearly no hyperplane can put A and D on 
one side, B and C on the other. 

(Because the hyperplane must intersect the 
2-plane defined by ABDC in a I-plane which 
separates B and C from A and D -- clearly 
impossible. ) 

This new geometric language will 
facilitate discussion of some interesting 
properties of switching functions in the 
next section. More important, it allows a 
geometric approach to compound synthesis, 
and provides a connection with previous 
(algebraic) results, which in turn make it 
possible to establish geometrically reason
able arguments rigorously. The au�hor 
feels that the complexity of compound syn
thesis problems reQuire that geometric in
tuition be used as a tool. No mechanical 
algebraic procedure is likely to be feasi
ble in cases of many arguments and com
plicated functions. 

Now, a geometric picture of the 2-
realization algorithm: Suppose f is dis
played in the usual fashion on an n-cube. 
Then equation (1) can be pictured as 
follows: h(x) divides the n-cube into two 
sections. In the two sections, f is 
realized by g and g , which are two 
versions of globtain�d by parallel trans
lation (adding the weight of gls (n+1)st 
argument or not, in case h(�) is T or F) 
(see Fig. 1). In other words, g, dis
placed along a fault line h, separates 
vertices belonging to f from those not be
longing. 

h faT 

f= F 

.illJ. 



;,S an example consider the following 
real1zation of x e y: 

x � Y = xi + iy = S (-2 + 4. If( x ) + 3. er( y ) 
-6 ... S( -4 + 2.o-(x) 
+3.cr(y»}. 

Geome tr i ca lly: 
y 

--------e-����----�--�-x 
T- REGION 

FIG 2 

Often g and h will run parallel, 
d 1 vld lng the n-space into four regions, 
alternating T, F, T, F. 
T'"rO-ELFMENT SYNTHESIS 

The main point of the procedure is 
contained in the following results: 

Definition: Given f and a�y 
valuation X. define (X J 0, (X 1 , (Xlr as those subsets of [fXl confaining 
the f-neutral. f-positive, and f
negative vectors respectively. 

Theorem: If f, g, and h are as 
in (�), tben for every valuation X, 
[X 1 is f-proper. In fact. one of 
the �8110Wing four pairs of equations 
holds{ : 

rXl � � IX] ; and Lx1 � 2 [X] ;. 

or 

or 

[ X] � 2 [X 1; and Ix] � � I x] ;, 

[xl � � [x]; and LX] � 2 [xJ;. 
� + 

The choice of sign on [X] h corresponds 
to which side of the h-plane we take as the 
T-side. The other choice corresponds to 
which of [X) ; or r X] ; we spl1 t apart 
',.,6 discussion following theorem). Note 
!�ateltherlX] � or CX1 � must be empty, 
�nce (XI must be h-proper. 
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or 

eX] � 2 (X) ; and r X J � 2 t xl;. 
In less precise terms, this says 

nothing more than that the hyperplane de
fined by h splits certain offending 
vectors apart -- if X is f-improper, then 
h either splits all of its positive 
vectors apart, or splits all of its nega
tive vectors apart, so that �he resulting 
set of unsplit vectors, [xl h' is f
proper. Furthermore, having spIlt one set 
apart, It then splits none of the other 
set. Now the two versions of g have a 
chance of dividing fls T-polnts from its 
F-points. (Of course. we know that even a 
completely monotonic function may not be 
realizable, so the converse of the theorem 
doesn It hold.) 

This result applies to the function 
of Fig. 2 as follows: Algebraically, we 
know that xy + iy is not I-realizable be
cause it is not unate in x (for instance). 
But this translates to not being positive 
in X = { x = T} or in X. And geometri
cally this means that the vector-set con
sisting of 

V1: (0,0) -+ (0,1) and 

V2: (1,0) -+ (1.1) 

is improper -- V is positive and V is 
negative. This �ans that whatever2h we 
use must either split V or split V ; our 
particular h split V2, knd saved V1

2intact. 
The synthesis method makes use of the 

above necessary condition on h to specify 
enough of its properties that h can itself 
be determined: For varicus appropriate':
valuations X, we first determine whether X 
is f-proper or not. If it is, no infor
mation is obtained. If not, then we know 
that one of the four equations (2) hold 
for X. If we take enough XIS, this infor
mation, taken together with the fact that 
h must be completely monotonic, will 
usually determine h. A reasonable way to 
handle the whole procedure is to build up 
h as follows: 

1. Make a list corresponding to the + 
improper Xi. Each entry consists of (Xi] f and (Xil f' 

2. Set i = 1, and initialize and 
execute the following process: 

3. Determine whether �oth points of 
any of the vectors of [Xi J f+ (Xi1 f have 
.. :t The choice of an appropriate set of such 
X is facilitated by previous theory (13] • 
We usually begin with one-argument XIS, 
then use those 2-argument XIS appropriate, 
and so on, stopping with In/2l -argument 
XIS. 



yet been determined in h. 

a. If they have, then it is 
determined which of the vector sets must 
be split and which kept intact. Put them 
properly into two corresponding lists: a 
"split-list" and a "pair-list". 

b. If they haven't, then store 
the present lists, together with the 
present value of i, in a pile�� memory; put 
,Xi1 + into the split-list, eX J - into 
the p{ir-list. (We come back to the other 
alternative later.) 

4. Now go through three different 
processes, attempting to determine addi
tional points of h, until none of them 
augment h further: 

-:H� a. Look at each split-list 
entry • If any of the points in any of 
the vectors in any entry have been deter
mined for h, then all the points appearing 
in vectors of that entry are determined. 
In this case specify these values for h 
and erase this entry from the split-list. 

b. Look at each pair in any 
entry of the pair-list. If either point 
has been determined for h, then the other 
of the pair is determined too, so specify 
it for h, and erase the pair (not the 
entry) • 

c. Apply the "don't-care" test 
synthesis augmentation described elsewhere 
, 13 1 to h, spe cifying further pOints·:Hr*. 

In any of these processes it may 
happen that a contradiction arises, that 
no h satisfies the choices made so far. 
In this case go to step 6. Otherwise, 

5. If all X have been considered, a 
consistent h sati�fying all conditions has 
been found. In this case go to step 7. 
Otherwise, increment i by one and return 
to step 3. 
{, A pile memory stores data serially, and 
when interrogated, produces the last item 
stored but not erased, and then erases it. 
E.g., a magnetic tape station which can be 
read from backwards could be used effective
ly. 
·:H(-When i = 1, we arbitrar*ly put the single 
entrv in the list ( (Xl] � or (Xl] ;) into 
eXl h or eX] h' to get sU.rted. I.e., we 
pick a point nrbitrarily in h so that all 
the points of this entry can be established 
in h. This arbitrary choice corresponds to 
settling which side of the h-plane will be 
T. 
*l:'-:<As a simple example of how this works, 
suppose (see Fig. 2) that (0,0) has been 
determined F, and that (1,0) and (0,1) have 
been determined T. Then step 4.c would 
determine (1,1) as T so that the result 
could be unate. 

58 

6. Fetch the last entry in the pile; 
we now want to pur sue another branch. Re
set i as it was at this last branch point, 
and this ti�e put (X1 ] ; into the split 
list, (X 1 into thEf pair list. (If we 'va 
backed atl the way up past the last branch, 
then the pile will be empty, and we've 
shown that all possibilities are incon
sistent, i.e., that f is not 2-realizable, 
and we exit.) Go to step 4. 

7. Using the standard l-realization 
algorithm, realize h. (If it is not reali
zable, which is possible since we only know 
that h is completely monotonic, then we 
must start o��r again at step 6.) And now 
2n of the 2n vertices of g are determined 
(one of g's ar guments is h). Use the 
don't-care test synthesis procedure to 
realize g. (Again -- return to step 6 if 
g isn't l-realizable.) 

In hand computation with colored 
pencils, a pile of mimeographed cube
arrays, and geometric intuition, a function 
of four ar guments can be handled in a few 
minutes. The procedure was used to demon
strate that the 38 symmetry types which 
Minnick, Glaser, and Moore (9) were unable 
to reduce to 2 gates are, in fact, not so 
realizable. When the algorithm is pro
grammed, this result will be machine
checked. It will then be �easible, also, 
to obtain integral-minimal' realizations 
for all of the four-argument symmetry types 
simply by returning from step 7 to step 6, 
and comparing the various realizations ob
tained (there won't be many, usually). 

AN EXAMPLE 

Just to sketch an example, consider 
Minnick's function number 132 (91 
(0, 1, 2, 4, 7, 9, 14) or 

f(w,x,y,z) = wxyz + xyz + w(xyz + !l  
__ ) + xz + yz , 

which is mapped in 4-space in Fig. 3. 

6 7 14 15 

.a+-......,�3 11 

o 8 9 x 

ILz FIG 3 
---------------��� W 

�� I.e., a realization in integers wherein 
the sum of absolute values of all weights 
involved 1s least. 



+step l_produces the following list of 
lxJ !' (xl f: 

Xl: w-direction: (6,14) 
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X2: x-d ire etion: (3,7), (10,14) 
X3 : y-direction: (5,7), (12,14) 
X)+: z-direction: (6,7), (a,9) 
X5: wx-cirection: (5,9) 
X6: wy-cirection: (3,9) 
X7: xy-direction: (8,14 ) 
Xa: xz-direction: (9,12) 
X9: yz-direction: (9,10 ) 

Now, when the second groups of X and 
'1.2 are chosen to be split, a contradi!tion 
wIll be obtained the first time step 4 
actually gets going. The second group of 
X together with the first group of �, 
hOwever, forces us to split the first of 
X. At this point h is completely specided (by step 4) and the other Xi all work 
out without a hitch. 

The function so specified may have 
turned out to be 

wz + (w+z) xy 

(Fig. 4) or its complement, depending on 
how we arbitrarily began. 

FIG 4 

FIG 5 

or (O,a), (2,10), (4,12), (7,15) 
or (1,5) , (2,6), (9,13 ) 
or (1,3) , (4,6), (9,11) 
or (2,3) , (4,5) , (14,15) 
or (4,8) , (7,11) 
or (2, e), (7,13) 
or (0,6), (9,15) 
or (11,14) 
or (13,14) 

In Figure 5 the partially speci1�Qu � 
is shown. It has one completely monotonic 
completion: 

(i+j+z+w)h + xyz. 

Combining these two, and writing down 
the obvious realizations, we get 

f(w,x,y,z) = S(-2 + w - 2x - 2y + 2z + 
5·S(-2w + x + Y - 2z», 

(writing "w" for "cr(w)", etc., which 
should produce no confusion here) or in 
Minnick's notation (which maps 0 .. F) 

{HI- {t 2x, 2y, 1 w, 2z, 5(2w,2z x,y,l). 

If we decide to search for the 
minimal solution and continue considering 
possibilities, then by now we've considered 
all possibilities where the second group of 
X, is split. Taking then the first group 
to be split, it turns out that each of the 
four choices for X and X result in a 
different solution2(one ol them Minnick's). 
Of course, each of the five solutions we 
end up with has two forms, depending on 
whether we use h or fi in each. And the 
solution given above is the integral
minimum solution. 

GENERALIZATION 

But suppose all alternatives result 
in contradiction , -- that f is not 2-
realizable. (With more than four argu
ments involved, this becomes the most 
likely case.) We can get a multi-element 
realization by iterating the procedure just 
described; an optimal realization is not 
guaranteed, but a good one will be obtained. 

Suppose that in testing f for 2-
realizability, h was the h that in some 
sense came close�t to working (perhaps it 
split the most improper valuations). Then 
in the second step of the overall process, 
we try to 2-realize the function g which 
is implicitly and incompletely spe!lfled 
by the equation 



Since f wasn't 2-rea1izab1e, we know that 
gl won't be 1-rea1izab1e, so we try now to 
2-rea1ize it by repeating the procedure 
above. If we succeed, we have 

f{�) = g2{t, h1(�}' h2(X, �(t»), 
a 3-realization. If we don't, we try 
again with g , and so on. The procedure 
terminates (�nd fast) because each new h 
makes more valuations proper. 

The result of this process is 

f(x) = 
.... ... 

h2 {jc,h1 (
x}), gk (x, h1 (x), ••• 

.... 
hl (

x), 
... 

... ) } ) �(x, ... , �_l(x, 

which represents a structure as in Fig. 6. 

'X ... -r-----r--

... 

FIG. 6 

When 2-1eve1 synthesis is desired, 
then in the process of finding the suc
cessive hi we don't use the earlier h i as 
arguments, and so get as a realization 

.. .. .... .... ... 
f ( x) = gk ( x, hl (x), h2 ( x) , • •• , � (x» • 

This special case allows a Simple 
geometric interpretation generalizing from 
Fig. 1: The k hIs divide the n-cube into 
many regions, and within each region a 
parallel version of gk_

realizes the local 
restriction of f (see-7ig. 7). If it is 
desired to eliminate the inputs t alto
gether from the lower stage(s) (as Muroga 
requires) then we add enough h-p1anes so 
that each region contains all T-vertices 
or all F-vertices. 
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F 

T 

-.. 

-- F 

T 

T 

- .. 

-�-� 
FIG.7 

Many questions about what can be 
expected in general and what biases are 
likely to lead to better solutions remain 
to be answered; our purpose here was 
simply to outline the application of k
monotonicity ideas to compound synthesis. 

\ 
, 

The interested reader can compare his 
results on the following example with 
those of the author: 

f(v,w,x, y, z) = wxz + vxy + vwxy + xyz 
+ wVxz + wVyz + wvXyz + wvxyz 

or 

(2, 4, 5, 7, 8, 12, 13,14, 16, 17, 21, 23, 27, 29). 

Trying to make proper the y- and z
directions, f was shown non 2-rea1izab1e 
very quickly: Only one out of four 
choices failed to produce a contradiction 
with just these two variations considered! 
And this one, although it managed to splIt 
the x- and w-directions, too, could not 
split the v-direction (and left two higher 
improper valuations unsp1it: xz and Yz). 
The h which managed this is the term with 
coefficient 12 in the final result below. 
The next step was to split the remaining 
three improper valuations -- this was 
quite simple, and partially specified h2, 
which has coefficient -7 below. To 
realize g , which had only 32 out of its 
128 verti€es specified, we used the don't
care synthesis procedure, and ended up with 
the 3-element result 
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t(v,w,x,y,z) = S(-2-3v-8w+lOx-3y+8z 
-7.S(-v-2w+x+2y) 
+12.S(-1+v+2w-3x+2y-4z». 

II. HIGHER CONDITI ONS 

THE CLASSICAL CONDITION AND SUMMABILITY 
n We recall the basic set of 2 in-

equalities, whose solvability is equi
vale�j)to a function's r�Htzability [13] 
�fkf are��c�u��a�h���f�Y) ='F: ih:�ithe 
system of inequalities with variables a, 
la 

� • �(j) � 0 all j 

all k 
(2 ) 

To make the type of*sign uniform we write 
down the equivalent system 

a .(�j) - liCk»� > 0 all j,k, 
-em) thr h and !.011) con!ti(tence let u run oug 

all v lJ - w , so that we get 

a • u(m) > 0 all m. 

(Note that the dummy argument v (i) = wo
(j) 

• T for all i, j, so in effect Se've 
elimlnated the threshold a frB�the 
system.) There may be up �o 4 of these 
inequalities, but as shown last year t loll , 
Most of these are redundant and can be 
ignored. 

Both C. C. Elgot (4l and C. K. 
Chow (2] have pointed out an equivalent 
condition for realiza�11ity obtained by 
applying a well known'" result in the 
theory of linear inequalities. It is the 
following: 

That there exist no am :). 0, � am > 0, 
.ueh that 

00::" • u (m) = 0 "'" am i m 
for all 1. (3) 

This new condition is nothing more than 
the dual of the old, in linear progrElllll1ling 
terms: Ladi)A be the matrix whose columns 
lire the �{ ,let U be (the column vector) 
t, X be�. Then originally we had (T is 
the transpose) 

and we got the equivalent condi tiona 

AX = 0 
X � 0, X" O. 

• EqUivalent because this amounts to 
oliminating ao' 

4Hf See references 1 and 5. 

In A. W. Tucker's terminology [12) , the 
systems 

AX = 0 
AT U � 0 and 

X�O 

are dual. And his theorem 6 has as a 
corollary that requiring strict inequali
ties on the left is equivalent to reqUiring 
non-trivial solutions on the right, so far 
as consistency goes. 

We next restate, and give a name to, 
a condition discussed by Elgot and Chow: 

Definition: A switching function 
is k-summable when there exist j 1'
positive vectors X (2 � j � k) (n�t 
necessarily distinh) such that E.X1 = O. l' is k-asummable when it is not 
k-summable. f Is summable when it is 
k-summable for some k, otherwise 
asummable. 

As shown by Elgot: 

Theorem: f is realizable if and 
only If f Is asummable. 

This restatement should be obvious: 
The ��8itiltjTect��i)have the components 
of W ' J = V - W , and the theorem 
simply says that when l' is unrealizable we 
can find integral a to satisfy (3). Since 
the coefficients ari all integral, this is 
no restriction, and the theorem simply re
states condition (3'. 

CONNECTIONS WITH OTHER PROPERTIES 

As Elgot pointed out, 2-asummability 
is equivalent to complete monotonicity, 
and 3-asummability is equivalent to a con
dition of Muroga, et al [111 (page 387). 
2-asummabtlity is known to be not suf
ficient for realizability (E. F. Moore's 
counterexample, see reference 13), so the 
question arose, is k-asummability, for some 
fixed k ( � 3), sufficient? It is not, 
showing that as k increases, the condition 
becomes in fact stricter. We demonstrate 
this by constructing a set of functions 
{f }, where fk is k-asummable, but not 
reafiz ab le: 

Fix k. Choose (a" a::)J "" a -1 ) 
relatively prime in pai�s, Buch tha£ 

ai > 2(k+l) 

and such that 

for all i = 1, 2, ••• n-l, 

n-l 

� < L 
1 

Solve the following Diophantine equation 
for (an' Pn): 



• -1. 
Choose a solution such that 

n 
De1'1ne tk as tollows : fk has (� an) 

1 
arguments, and is symmetric within groups 
ot a1 arguments. We define the value ot 
l' in terms of how many arguments within 
eich of the n groups have value T. T�8 
quantity (how many arguments in the j 
group have value T) we call y .  (So 0 � 
Yj ( a1.) Now fk is almost 8�parated by 
tne pIlUle 

For all argument ( � a )-tuples satisfying 
this inequality we assign tk value T. For 
those tuples not satisfying it we assign 
value F, with one exception: The tuple 
with y-values 

... p = (1, 1, • • •  , 1, Pn) 

we assign value T, instead. 

That the steps can be made as required 
above, and that the result is in fact k
asummable but not realizable, reQuires 
more proot than we have space for here. 

FURTHER PROPERTIES, AND SOME OPEN QUESTIONS 

During last year's conference interest 
was shown in the following property of 
realizable functions (we use Elgot's 
notation) : 
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Definition: Given a switching 
function 1', then a relation on the 
points of th� n-cube is defined as 
follows: P ...... Q means that there 
exists an f-positive vector parallel 
to and of the same len§th as that from 
P to Q. (We drop the 1'" when no con
fusion can result.) l' is transitive 
when l' is 2-asummable (i.e., com
pletely monotonic) and this relation 
is transitive, i. e. , when P �Q ..... R 
implies P ..... R. 

Unfortunately, transitivity falls far 
short of being necessary for realizability: 
The (realizable) function expressed by 

AB ( C + D) 

is not transitive. Whether transitivity 
is suffic1ent for realizability remains an 
open question. 

Another property of interest, f1rst 
discussed by Elgot, 1s the following: 

Definition: A sw1tohing function 
f is k-cyclic when for some j � k 
there exist points PI! P2" • •  ' Pj in 
the n-cube such that-p� � p;:,? --*' • •• 

.... p � p .  If not K-cycl'lC, l' is 
k-aeY�11c; 11' k-cyc11c for some k, l' 
is cycl1c, and otherwise acyclic. 

Clearly a k-cyclic function is k-
summable and a cyclic function summable, 
so k-acyclicity and acyclieity are neces
sary conditions for realizability. Also, 
a transitive function is acyclic. Elgot 
showed that for k = 2 and 3, k-acycliclty 
and k-asummability are equivalent. It re
mains an open question whether acyclicity 
is equivalent to realizab1lity (and asum
mability). (Solved July 25: negative.) 

III. INTEGRAL-MINIMAL REALIZATION 

Definition: a realization i 01' 
a function l' is integral-minimal (or 
s1mply minimal) when the a are in
tegers, and among such realizations 
of 1', the weight 

n 
W = L. I ad 

o 

is minimal. 

The problem of finding such reali
zations efficiently has received a large 
amount of (unpublished) attention. It re
mains unsolved; our intention here is to 
point out the applicability of k-monotoni
city ideas to the obvious direct approach, 
and to apply these ideas 1n disproving a 
conjecture made last year. 

In the process of determining a 
function's realizability, an iterative 
solution for the ai 1s found. Suppose we 
consider the g of the last example of the 
section on co�ound synthesis (we drop the 
negation on t, w, v, and y): 

f(t,u,v,w,x,y) = u [ x(w + z + t + v + y) 
+ wz + (W+z)(t+v+y) + tvy] 
+x ( wz + (w+z) (t+vy) + tvy) 
+ wzt. 

Using the methods of reference 13, we get 

u ") x '> w = z > t ,. v = y > 0, and by 
forming C(P) and reducing (in particular, 
assuming the coefficients of equal 



arguments are equal) , we get as the es
sential terms (and now we use the same 
letter to represent the coefficient as the 
variable) : 

u + x 

u + t + v (4 ) 
x + W + v 

2 w + 2 v 

The (iterative) solution of this system is 
obtained in the usual fashion; the tables 
telow indicate a convenient way to arrange 
the calculation. 

eros s terms from (4) :  u eliminated: 

u x w t v x w t v 
** -1 1 1 -1 1 1 
-!Ht 1 -1 {:-":r 1 -1 
v* 1 -1 ,Hi- -1 1 1 

1 -1 -1 1 -2 1 
-1 1 2 {Hr- -1 1 1 -1 
-1 1 1 {H:· 1 -2 

0* -1 1 1 .:I-:l- =-1- - -1- "2 
'.Hi 1 -2 1 �H� .1 

-1 -1 2 1 *�t- -2 2 1 
-1 2 -1 *i�4 -1 2 -1 

,HI -1 1 1 -1 ,:. -1 1 1 
,I<. 1 -2 {HI- 1 -1 

{I- -1 1 1 -1 
{HI- 1 -2 

x eliminated: w eliminated: 

w t v t v 
1 -1 1 -2 

-1 1 1 �!--:r 1 
�;':i 1 -2 -!!-:t 1 -1 
lH, 1 {Hr 1 
{;.:, 1 -2 ":r - -1 

I� =1- r -1 {l- I -1 
l; 1 ":r 1 

� -1 2 -1 .;r 2 
it -2 2 2 ·U· 1 -1 

-!HI -2 3 �r 1 
on 1 -1 .:1--:1- 2 

:a {; -1 2 -1 {i-:l- 3 
it 1 -1 �} 1 

0" -1 1 2 .. :t- 2 -2 
{H; 1 "!H� 3 -2 
roo!; 1 -1 {HI- 1 1 

* 1 -1 

t e 11mina ted: 

v 
"71 

TI:6 first table contains all possible com
binations from (4) : -x+W+v > 0, etc. 
�ubseouent tables list first the ineQuali
tIes not involving the eliminated variable, 
Ana then list all swns of two ineoualities 
wh1ch eHminate the variable. The '� in
'!teates duplicate equations, the ,HI- in
�Icates equations which were later found 
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to be redundant. (The work would have 
been much shortened, of course, if we had 
looked for redundant equations immediate
ly.) The solution is read off from the 
un-starred inequalities: 

v >o 
t >2v 

t + v )w >t 
w + v )x >2w-t 

t + 2v, x + v, 2w + t - x, 2w - v > u ') w+v 

The direct approach is to try integral 
solutionslexicographica11y as follows : 

v t w x  u 
1 3 

1 4 

2 5 6  

2 6 7 

3 7 8 10 12 

making no progress. Note 
v � 2 required. 

ditto. Note that v must 
increase again 
and the bias turns out to 
be -23':-*. 

To assure ourselves that this is minimal, 
we use the following sort of argwnent: 

1 � w - t < x-w < v ,  so v >, 3 

t ) 2v, so t >;- 7 
w > t, so w � 8 

1 � w-t < x-w, i.e. x > w + 1 so x � 10 

u > w + v 

u + x does not attain threshold 
so u ':" 12 

so the bias 
� -23. 

Several drawbacks to this approach 
should be mentioned. The process of de
termining how to get out of a hopeless 
ite�ation needs clarification (a simple 
task) . More important, it would be a 
great improvement if we knew in general 
that our result, a "lexicographic minimwn", 
is the actual minimwn wanted. (Con
jecture: It always will be.) In such a 
case, the last (seat-of-the-pants) step is 
not needed. An important defect is the 
fact that equal argwnents were assigned 
equal coefficients. Without this simpli
fication, the number of inequalities gets 
out of hand (for large n) . And with it, a 
minimum solution is not assured, contrary 
to the conjecture made last year (in 
private discussions) . The following 
example demonstrates this. 

{I-E.g., having assigned v = 1, we know t> 
2, so we try t = 3. Then 4 > w � 3, im
possible. So we try another assignment. 
{HI-To realize the original function, where 
t, w, v ,  and y were negated, we use in
stead -3,-3,-7,-8,8,10,12; -23+3+3+7+8 = 
-2. 



F{A, B, C, D, E, G, H, I) = 
A r (B + C) + (D + E) + G(H + I) + H I 1 
+ BC +(B+C) (DE + (D+E) [G + (H+I))+ GHI) 
+ DE [ G + HI 1 
Here we have 

A>B=C>D=E>G>H = I. 

If, as with the previous example, we assume 
b = c, d = e, and h = i, then the procedure 
(even.tually) gives the realization 

9,7,7,5,5,3,2,2; -13. 

But the realization 9,7,6,5,5,3,2,2; -13, 
with W = 52, is minimal, as the following 
argument shows: We mow a > b, c > d, e '> 
g '> h, i and we can check that d, e '> h + 
i > g (by 3-monotonicity). 

1. If' h = i = 1, then 2 ) g > 1; im
possible. 

2. If h = 1, i = 2, then 2 > g > 1; 
impossible. 

3. If h:" 2, i '> ... 3, then the best 
possible realization would be 2,3,4,6,6,7, 
7,8; -16 (since DGHI does not attain thres
hold) with W = 59. 

4. So try h = i = 2. Then 4 > g > 2, 
i.e. , g = 3. 

A. If e = 6, the best possible 
realization would be 2,2,3,5,6,7,7,8; -14, 
with W = 54. 

B. So try d = e = 5 (since d 
e > 4). NOW, since DEG attains threshoid 
while DEH does not, the bias = -13. 
Since BC and AHI attain threshold, b + c 
� 13 and a � 9. So W � 2 + 2 + 3 + 5 + 5 
+ 13 + 9 + 13 = 52, and the given solution 
is indeed minimal. 

This function should be an interesting one 
for testing newly invented synthesis pro
cedures. In particular, it would not be 
surprising if the linear programming 
methods (e.g. , Muroga (11) and Minnick (9) 
produced fractions with it. 

"This paper, although based on work 
sponsored by the U. S. Air Force, has not 
been approved or disapproved by that 
Agency. " 

The research reported i n  this paper 
has been partially sponsored by the Elec
tronics Research Directorate of the Air 
Force Office of Aerospace Research con-
tract AF19(604)-8423. 

' 
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