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Menz, Michael D. and Ralph D. Freeman. Functional connectivity of
disparity-tuned neurons in the visual cortex. J Neurophysiol 91: 1794–1807,
2004. First published December 10, 2003; 10.1152/jn.00574.2003. Dif-
ferent mechanisms have been proposed concerning how disparity-
tuned neurons might be connected to produce the signals for depth
perception. Here we present neurophysiological evidence providing
insight on this issue. We have recorded simultaneously from pairs of
disparity-tuned neurons in the cat’s striate cortex. The purpose was to
determine the relationships between disparity tuning and functional
connectivity revealed through neural cross-correlograms. Monosyn-
aptic connections tend to be stronger between pairs of cells with
similar disparity tuning. Pairs of complex cells tend to have either
similar tuning or nearly opposite tuning with an absence of quadrature
relations. Pairs with at least one simple cell do have some nearly
quadrature relationships when they are recorded from the same elec-
trode. Coarse-to-fine connections (i.e., the presynaptic cell has lower
disparity frequency and larger disparity range) tend to be stronger but
less frequent than those of a fine-to-coarse nature. Our results are
consistent with a system that produces weighted averaging across
cells that are tuned to similar disparities but different disparity scales
to reduce false matches.

I N T R O D U C T I O N

The transmission of information in central visual pathways
undergoes two major transformations in the striate cortex.
First, receptive fields (RFs) generally lose concentric center-
surround organization. Second, signals from left and right eyes
are combined to form a neural substrate for binocular vision.
The lateral displacement of the eyes creates a horizontal image
disparity. When these images are properly fused, the normal
binocular system creates a perception of stereoscopic depth.
The neural basis of this function has been investigated by
theoretical, behavioral, and neurophysiological approaches.
The first relevant physiological finding was that cells in V1
(area 17) respond to different depth planes. (Barlow et al. 1967;
Nikara et al. 1968). Studies in awake behaving monkeys con-
firmed and expanded this finding (e.g., Poggio 1990; Poggio
and Fischer 1977; Poggio et al. 1985).

None of the early neurophysiological studies was concerned
with neural mechanisms. It was tacitly assumed that RFs with
lateral displacements were disparity detectors. Furthermore,
left and right RFs were thought to be identical (Hubel and
Wiesel 1962) so that lateral displacement made sense as an
encoding mechanism. More recent work has shown that dif-
ferences in internal RF structure or phase between left and right
eyes constitute an important encoding mechanism. This has
been demonstrated in anesthetized paralyzed cats (Anzai et al.
1997; DeAngelis et al. 1992, 1995; Freeman and Ohzawa

1990, 1992; Ohzawa et al. 1996, 1997) and in awake behaving
monkeys (Cumming and Parker 1999, 2000). In addition, a
disparity-encoding scheme, based on the energy model (Adel-
son and Bergen 1985; Watson and Ahumada 1985), has been
developed under the assumption of serial processing from
simple-to-complex cells (Ohzawa et al. 1990, 1997).

Although these studies of mechanisms are illuminating, a
number of questions remain. One important area concerns the
combination and transmission of stereoscopic information.
There are two variables relevant to spatial scale; disparity
frequency and disparity range. Disparity frequency is impor-
tant because visual scenes contain a wide variety of detail, and
neurons are selectively responsive to specific spatial bands.
Disparity information must therefore be combined across spa-
tial scale. Disparity range is relevant because of a trade-off
with frequency. Coarse stereopsis can occur over a wide range
of depths. Fine stereopsis provides the required resolution but
is limited to a small range. A central question is: how does
stereoscopic processing occur so that different spatial scales
are combined to provide coarse and fine levels? In the preced-
ing paper, we addressed this question using two types of
neurophysiological analysis. First, we found that disparity tun-
ing generally sharpens during the time course of the response.
Second, we determined that neurons tuned to large spatial scale
have relatively short temporal latencies (Menz and Freeman
2004). Both these findings are consistent with a coarse-to-fine
neural processing sequence. In the study reported here, we
have examined this topic by carrying out an analysis of simul-
taneous extracellular recordings from pairs of neurons in striate
cortex. Both sparse and dense noise visual stimulation were
used to obtain disparity-tuning curves for simple and complex
cells. (Anzai et al. 1999a–c; Ohzawa et al. 1996, 1997) Cross-
correlations between pairs of neurons were analyzed to deter-
mine functional intercellular relationships for disparity-tuned
neurons.

We have determined several types of relationships between
disparity-tuned cortical cells. The most important concerns the
connections between disparity frequency and range. The most
common connection is one in which the presynaptic cell of the
pair has a relatively high disparity frequency. However, cross-
correlograms are generally stronger for pairs in which the
presynaptic cell is lower in disparity frequency. Considered
together, this combination of findings and the results reported
in the preceding paper (Menz and Freeman 2004) are expected
for a system in which there is a weighted averaging across
spatial scale, and coarse processing occurs prior to fine. This
type of coarse-to-fine process has been proposed in theoretical
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work as a solution to the correspondence problem (Marr and
Poggio 1979). A similar mechanism may apply to overall
stereoscopic processing and to other perceptual events.

M E T H O D S

Experiments are conducted with anesthetized, paralyzed cats. The
equipment and procedures for surgery, animal maintenance, single-
unit recording, RF mapping, and some data analysis techniques have
been described in previous papers from our laboratory (Anzai et al.
1999a,b; DeAngelis et al. 1993a,b, 1999; Ohzawa et al. 1997). The
following narrative emphasizes procedures that are most relevant to
the current study.

Surgical procedures and animal maintenance

The surgical and animal maintenance procedures are described in
detail in the preceding companion paper (Menz and Freeman 2004).
Experiments lasted for 3–4 days. At the end of the experiment,
animals are killed with pentobarbital sodium (Nembutal, �50 mg/kg).
The animal is immediately perfused with a formaldehyde solution.
Electrode tracks are reconstructed and cortical lamina identified. Re-
cordings were made at all depths and all cells were recorded from area
17.

Experimental apparatus

Visual stimuli are generated by a computer with two high-resolu-
tion graphics boards. Images are displayed on a pair of video moni-
tors, one for each eye, that the cat views by means of beam splitters.
The mean luminance of the displays viewed through the beam splitters
is 23 cd/m2. In one recording configuration, two tungsten-in-glass or
varnished tungsten microelectrodes are advanced together into visual
cortex via a piezoelectric micropositioner. The lateral tip spacing is
�250 �m for the varnished tungsten and �350 �m for the tungsten-
in-glass electrodes. Vertical position tip differences are �200 �m. An
alternative electrode positioner with a hydraulic system allowed four
microelectrodes to be moved independently; this facilitated locating
neurons on separate electrodes at the same time. Relative depth
differences between these electrodes did not exceed 500 �m. In some
experiments, the four electrodes were arranged in a lateral-medial line
to facilitate recording from different layers within a single column. In
other configurations, the four electrodes were arranged as close as
possible to each other in a square-shaped configuration. Action po-
tentials are discriminated by custom created software (Ohzawa et al.
1996) and time stamped with 40-�s resolution.

Recording procedures

The recording procedures are identical to those of the preceding
companion paper (Menz and Freeman 2004).

RF mapping

For most pairs, dichoptic one-dimensional binary m-sequence noise
is used to map RFs (Anzai et al. 1999a,b). For some pairs, a sparse
noise stimulus is used, and sometimes both methods are employed.
Sixteen adjacent bars are presented for each eye at the mean optimal
orientation of multiple neurons for a given eye as illustrated in Fig.
1A. The width of the bars is approximately one-fourth the period of
the (mean) optimal frequency. The length of the bar is equal to 16
times the width. This square pattern is centered over the (mean) RF
center. Computationally, each spike train is cross-correlated with the
stimulus sequence by means of the fast m-transform (Sutter 1991) to
obtain space-time RF maps for dense noise. Conceptually, a spike
train is cross-correlated at a specific time delay with the stimulus
sequence at each spatial position to obtain a RF map at that time delay

as depicted in Fig. 1B. This is repeated for all time delays of interest
(0–200 ms) in increments of 5 ms to obtain a space-time RF. The
binocular view field is a representation of the stimuli in the axial plane
(i.e., the plane defined by the visual axes) assuming a nonhorizontal
stimulus orientation (i.e., there can be no horizontal disparity, that
encodes stereoscopic depth, if the orientation is horizontal). In Fig.
1A, when the luminance polarity of the bars is the same, that position
is marked in white. Opposite polarity bar combinations are shown in
black. A nonlinear binocular interaction map is obtained by cross-
correlating the spike train with each spatial location in the binocular
view field pattern. In the maps shown in Fig. 1, C and D, the white and
dark regions indicate excitatory responses to same polarity and oppo-
site polarity bars, respectively.

Sparse noise RF maps are also constructed by cross-correlating the
spike train with the stimulus sequence at each spatial location (DeAn-
gelis et al. 1993a,b; Ohzawa et al. 1997). Our sparse noise pattern is
tertiary. There are three luminance levels at each spatial position:
bright, dark, and gray. For the binocular interaction map, cross-
correlation with sparse noise generates four separate maps for each
luminance combination bright-bright (BB), bright-dark (BD), dark-
bright (DB), dark-dark (DD). To make comparable sparse and deuse
noise maps, we generate a composite map from sparse noise as
follows: BB�DD-DB-BD.

Data analysis

The two-dimensional binocular interaction maps are reduced to
one-dimensional disparity-tuning data by integrating along lines of
equal disparity (Ohzawa et al. 1997) as illustrated in Fig. 1, C and D.
The optimal time delay is defined as the correlation delay that pro-
duces the largest root mean square signal strength in the one-dimen-
sional tuning data. For this study, only the disparity tuning curves at
the optimal delay are considered. The noise of the RF measurement is
estimated from the average root mean square of noncausal time slices.

The similarity index (i.e., Pearson product-moment correlation) is a
model-free measure of the similarity of a pair of disparity tuning
curves

SI �

�
i�1

n

�xi � x���yi � y��

�� �
i�1

n

�xi � x��2 ��� �
i�1

n

�yi � y��2 � (1)

where xi are the data from one cell at location i, and yi are the data
from the other cell at location i, and x�, y� are the mean values. The
disparity tuning curves are fit with a Gabor function by the Leven-
berg-Marquardt algorithm (Press et al. 1992)

D�d� � exp���d � do�
2/2�d

2� cos �2�fd �d � do� � �d� (2)

where d is disparity, do is the center position disparity, �d is the
disparity range or size parameter along the disparity axis, fd is the
disparity frequency, �d is the disparity phase. Differences in some
parameters (e.g., frequency and size, but not phase) between pairs of
cells are normalized by the average value. The quality of the fit is
evaluated with the rms of the error. The ratio of signal strength to
model error must exceed 1.6 for both cells of the pair to be included
in this study. This is an arbitrary value used to indicate reliable signals
and determined from observations of all the data. If there are multiple
repetitions, the results from the run that produces the strongest signal
to noise ratio is used.

Raw neural cross-correlograms are computed between disparity-
tuned pairs of cells for all stimulus runs that have at least two
repetitions and 1,000 spikes per cell; this includes orientation and
spatial frequency tuning runs with sinusoidal gratings and dense and
sparse noise stimuli. All raw neural correlograms are shuffle-sub-
tracted to eliminate stimulus-based correlations (Perkel et al. 1967b).
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The following steps are used. First, a cross-correlogram is computed
using all repetitions, so this includes both stimulus and neural based
correlations. Second, the responses from the two cell types are cross-
correlated across different repetitions, so this includes only stimulus
based correlations and it excludes those that are neurally based. Third,

these “shuffled” correlations are subtracted from the first step, yield-
ing neurally based correlations only.

The neural cross-correlogram is binned in increments of 0.5 ms and
computed from �100 ms (the figures only display �50 ms). Ampli-
tude is normalized by �N1N2, and multiplied by 100 to give percent-
age, where N1 is the number of spikes from cell 1, and N2 is the
number of spikes from cell 2 (Brosch and Schreiner 1999). We
compute a correlogram asymmetry index, which is a measure of how
much the correlogram peak area is shifted from zero (Alonso and
Martinez 1998): AI � (R � L)/(R � L), where R and L are the area
of the bins to the right and left of zero, respectively. The cross-
correlogram is smoothed with a five-bin Gaussian function. If the pair
of cells is recorded from the same electrode, there is a small region
around zero correlation (� �2.5 ms) where the two spikes cannot be
discriminated. This region is identified and excluded from analysis
(exclusion zone). We compute the mean and SD of the shuffled
cross-correlogram in the region between �50 and 100 ms. If the
amplitude of a bin exceeds the mean by 3 SDs, then it is considered
statistically significant. Cross-correlograms with no significant bins in
the range of �20 ms are excluded from this study.

Multiple significant bins occur adjacent to each other to create an
excitatory “peak” in the cross-correlogram. The latency of this peak is
at the bin of maximum amplitude. The width of the peak is defined as
the width at half-maximum amplitude. The strength of cross-correla-
tion is the area of the peak between half-heights of maximum ampli-
tude (i.e., width). For correlograms measured from the same electrode,
sometimes the peak extends across the small exclusion zone �0 ms,
in which case, the estimates of width and strength continue across the
exclusion zone. Because of the presence of the exclusion zone, the
magnitude of strength and width is underestimated when recordings
are from the same electrode. There is no interpolation across the
exclusion zone. For any pair of cells, there are multiple cross-corre-
lograms based on the different stimulus runs. The run that produces
the greatest cross-correlation strength defines the strength, width, and
latency for that pair.

Quantitative criteria are used to distinguish between the different
connection types. Monosynaptic connections are defined as having a
peak latency �3.5 ms, width �5 ms, and asymmetry index 	0.2.
Polysynaptic connections are defined as nonmonosynaptic connec-
tions having a peak latency �10 ms and asymmetry index 	0.2.
Common input connections are defined as having a peak latency �5
ms and asymmetry index 	0.2 (Menz and Freeman 2003). These
quantitative criteria are consistent with known properties of mono-
synaptic, polysynaptic, and common input connections (Moore et al.
1970). Note that these are mutually exclusive categories, and a cross-
correlogram that does not fall into any of these is excluded from this
study. After classification, mono- and polysynaptic cross-correlo-
grams are renormalized by the number of presynaptic spikes (i.e.,
“effectiveness”) (Aertsen and Gerstein 1985) and multiplied by 100 to
give percentage.

FIG. 1. Dense and sparse noise methods for obtaining disparity tuning
curves. A: dichoptic binary m-sequence dense noise stimulus consists of 16
bars presented at optimal orientation for each eye, whereas sparse noise has
only 1 bar per eye. The binocular view field is a representation of the binocular
combination of stimuli, with either bright bars or dark bars in both eyes (same
contrast: white), or a bright bar in 1 eye and a dark bar in the other eye
(opposite contrast: black), presented at various depths across a fronto-parallel
plane. B: the spike train is cross-correlated to the binocular combination of
stimuli at various delays to obtain a nonlinear binocular interaction map at each
correlation delay. C: an example of a binocular interaction map for a complex
cell at the optimal time delay (i.e., strongest signal). This map illustrates the
response of the cell to the same contrast bars presented for each eye (white) or
opposite contrast bars for each eye (black) presented at various depths along a
fronto-parallel plane. A disparity tuning curve that is fit with a Gabor is
obtained by integrating along lines of constant disparity. D: this is an example
of a simple cell binocular interaction map and the resulting disparity tuning
curve.
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For the population data, robust regression (Li 1985) is used fre-
quently to quantify correlation between parameters. This technique
gives lower weight to data with large residual error and calculates the
regression iteratively. It is a quantitative method for reducing the
influence of outliers.

R E S U L T S

A total of 87 pairs of cells were recorded simultaneously that
exhibited binocular interaction maps with signal-to-noise ratios
sufficient to reliably extract Gabor parameters. Of these 87
pairs, 59 pairs had statistically significant structure in their
neural cross-correlograms, and these pairs are included in this
study. Nearly all these paired recordings were derived from
two cortical cells. However, in one instance, we recorded four
cells simultaneously and obtained five separate pairs. In other
multiple cell recordings, we monitored three cells and obtained
three pairs in one case and two in another. All cells in this
study are disparity tuned and have structure in the resulting
neural cross-correlograms that we classify as monosynaptic,
polysynaptic, or common input according to the quantitative
criteria described in the preceding text (see METHODS). Before
presenting data in these categories, it is important to point out
that the divisions of connectivity types are somewhat arbitrary.
The original designations of these categories were developed
from classical studies of neural cross-correlograms based on
solid experimental results (Aertsen and Gerstein 1985; Moore
et al. 1970; Perkel et al. 1967a,b). These categories are dis-
crete, but there is almost certainly a continuum between them.
Even so, the classifications are useful because they reveal
correlations between parameters within subpopulations. For
the results we present here, the terms “monosynaptic,”
“polysynaptic,” or “common input” connections mean that the
correlated firing patterns are consistent with or suggestive of a
particular type of connectivity.

Figure 2 shows the distribution of neural cross-correlograms

according to their latency, width, and asymmetry index. Cross-
correlograms that are consistent with monosynaptic connec-
tions have very small latencies and widths but a large value of
the asymmetry index (indicating that 1 neuron consistently
fires before the other). Connections that could be polysynaptic
are also highly asymmetric, but their widths and latencies are
generally larger. Pairs of cells that receive some common input
are likely to have relatively symmetrical peaks with small
latencies but widths may vary.

The cell pairs consist of combinations of simple and com-
plex types as defined by classical criteria (Hubel and Wiesel
1962) and by the predominance of first harmonic or mean firing
rates (Mechler and Ringach 2002; Skottun et al. 1991). In Fig.
3, a summary is presented of the various types of connections
of the cell pairs analyzed in this study. There are 14 monosyn-
aptic connections, 12 of which are for same electrode record-
ings. There are 14 polysynaptic recordings, 10 of which are
from same electrode recordings. Common input is the most
common type of connection (31 pairs). Pairs in Fig. 3 are
designated according to electrode spacing for each category.
As the data show, the most common pair type is complex-to-
complex cell. The least common is complex-to-simple.

Binocular energy model

The motion energy model (Adelson and Bergen 1985;
Watson and Ahumada 1985) and binocular energy model
(Ohzawa et al. 1990) describe specific characteristics of sub-
units of complex cells. These subunits have properties that
match the RF properties of simple cells (Anzai et al. 1999b,c).
If simple cells are the subunits, then one might expect mono-
synaptic connections from simple-to-complex cells when the
simple cell has the same disparity tuning curve as the complex
cell and their binocular interaction maps overlap. Previous
work has established that there are direct connections from

FIG. 2. This 3-dimensional (3-D) scatterplot
shows the entire population of neural cross-correlo-
grams plotted in the parameter space that is used to
characterize the different types. The peak of the
cross-correlogram has a width, latency, and asymme-
try index (where 0.0 represents a symmetrical distri-
bution around 0 time delay and 1.0 is maximally
asymmetric). Cross-correlograms have characteris-
tics that are consistent with monosynaptic (cube, gray
vertical line), polysynaptic (white sphere, white ver-
tical line), or common input (black sphere, black
vertical line) types of connectivity. The vertical lines
connect each data point to the x-y plane making it
easier to identify their location in 3-D space.

1797FUNCTIONAL CONNECTIVITY OF DISPARITY-TUNED NEURONS

J Neurophysiol • VOL 91 • APRIL 2004 • www.jn.org



simple-to-complex cells, but it is not known whether these
fulfill the requirements of the energy model (Alonso and Mar-
tinez 1998). Our expectation is that pairs of cells that closely
match the energy model requirements will exhibit stronger
neural cross-correlograms.

What are the requirements of the binocular energy model?
The subunits derive their disparity tuning from either a position
or a phase shift difference between monocular RFs, or a
combination of both mechanisms(Anzai et al. 1999b,c). The
monocular RFs are summed linearly, and the summation is
followed by a half-squaring nonlinearity process. The subunits
differ only in their monocular phase. A minimum of four
subunits is required, and they must be in quadrature.

A good example of a simple-to-complex cell monosynaptic
connection that closely matches the requirements of the bin-
ocular energy model is shown in Fig. 4. The binocular inter-
action RF maps (Fig. 4, A and B) have the typical structure of

simple and complex cells, and they are centered and overlap
extensively. The one-dimensional disparity tuning data are fit
with Gabor functions (Fig. 4C). The similarity of the disparity
tuning is quantified by the similarity index (SI � 0.73, where
1.0 is identical, 0 dissimilar, �1.0 opposite, see METHODS). In

FIG. 4. Binocular energy model example. A: binocular interaction map at
optimal time delay recorded from a simple cell. B: binocular interaction map
at optimal time delay for a complex cell recorded simultaneously with A from
an adjacent electrode (i.e., lateral separation of 250 �m). C: disparity tuning
curves for the simple cell (open circles, the data, dashed line, the Gabor fit) and
complex cell (filled circles, the data; solid line, the Gabor fit) are very similar
(similarity index � 0.73). D: neural cross-correlogram normalized by the
number of presynaptic spikes demonstrates a strong (area of peak � 34.9)
monosynaptic peak with the simple cell as the presynaptic cell. Horizontal gray
lines, 3 SDs from the mean (evaluated from correlation delays between 50 and
100 ms). Vertical dashed gray line, 0 correlation difference. Both cells were
recorded from layer 4. This is an example that is consistent with the binocular
energy model.

FIG. 3. Population summary by electrode spacing, synaptic type, and cell
type. The electrode spacing refers to the lateral distance between the electrodes
for a pair of recorded cells. It is the minimum distance possible between the
electrode tips for that pair of cells. The criteria used for the classification of
synaptic types (e.g., monosynaptic, polysynaptic, and common input) is dis-
cussed in METHODS. Neural cross-correlograms that cannot be classified into 1
of these 3 categories is excluded from further analysis. For mono- and
polysynaptic connections, there are 4 possible cell combinations: complex to
complex (CC), simple to complex (SC), simple to simple (SS), and complex to
simple (CS). The unclassified category (UN) is for pairs in which 1 of the cells
cannot clearly be classified as simple or complex based on the ratio of the
fundamental to DC during a sine wave grating run. These pairs are included in
the results. For common input connections there are only 3 types: pairs of
complex cells (CC), 1 simple and 1 complex (S&C), and 2 simple cells (SS).
Mono- and polysynaptic connections come from the same electrode with just
a few exceptions. Common input connections generally come from different
electrodes. Connections between complex cells are the most common type
found. Every type of possible connection is represented, although complex to
simple is very rare (n � 1, monosynaptic; n � 0, polysynaptic).
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terms of the Gabor fit, the presynaptic simple cell is 0.08
cycle/° higher in disparity frequency, exhibits a 0.4° position
shift and differs in phase by 25°. The negative subregions,
which are excitatory to opposite contrast, are highly overlap-
ping. The positive subregions, which are excitatory to same
contrast, are shifted a little from the combination of position,
phase, and spatial frequency differences. This cell pair is not a
perfect fit for the energy model, yet the neural cross-correlo-
gram has a strong peak [strength � 34.9 (see METHODS)] and is
classified as monosynaptic (Fig. 4D). These cells were re-
corded from adjacent electrodes in layer 4 with an estimated
lateral separation of 250 �m.

In Fig. 5, we show a pair of cells that clearly do not meet the
requirements of the energy model. The binocular interaction
maps (Fig. 5, A and B) look like classic simple and complex
cell structures. They are overlapping, but the disparity tuning
curves are in nearly perfect quadrature (93° phase difference).
The phase of the simple cell is 96°, and the phase of the
complex cell is –3°. The similarity index is 0.02. The presyn-
aptic simple cell has a higher spatial frequency (by 0.13 cy-
cle/°) and larger size (range) parameter (by 0.11°). There is a
monosynaptic peak in the neural cross-correlogram of reason-
able strength (12.6). This pair is recorded in layer 4 from a
single electrode, so there is an artifactual blank area near the
zero correlation because it is not possible to discriminate two
different spikes from the same electrode when the temporal
separation is 	2.5 ms. Another example in which the pair has
similar tuning characteristics is shown in Fig. 6. In this case,
there is a unique lack of structure in the cross-correlogram.
This example makes the point that similar disparity-tuned pairs
do not necessarily show highly correlated firing patterns. As
with the previous examples, the binocular interaction maps
have typical structure for simple and complex cells. They are
overlapping, and disparity tuning is similar (SI � 0.71) even
though there is no structure in the neural cross-correlogram.
There are two notable differences between this example and
the one shown in Fig. 4. The pair in Fig. 4 was located in layer
4. In this example, the simple cell was recorded from layer 2,3
and the complex cell was from layer 4. In Fig. 4, the simple cell
had higher disparity frequency content. In this example, the
simple cell is lower in disparity frequency compared with the
complex cell (by 0.08 cycle/°). As shown below, the difference
in disparity frequency is important.

Strength versus similarity

We next examine the relationship between strength of neural
cross-correlation and similarity of the pairs in the population.

The obvious question is do monosynaptic pairs with similar
disparity tuning have stronger neural cross-correlation? Based
on previous cross-correlogram studies, pairs of cells with sim-
ilar RFs tend to have stronger connections (Alonso and Mar-
tinez 1998; Brosch and Schreiner 1999; DeAngelis et al. 1999;
Reid and Alonso 1995). This question is addressed in Fig. 7

FIG. 5. Simultaneous recording of simple and complex cell. A: binocular
interaction map at optimal time delay recorded from a simple cell. B: binocular
interaction map at optimal time delay for a complex cell recorded simulta-
neously with A from the same electrode. C: the simple cell (open circles, the
data; dashed line, is the Gabor fit) and complex cell (filled circles, the data;
solid line, the Gabor fit) have disparity tuning curves that are in nearly perfect
quadrature (similarity index � 0.02). This is not the quadrature between
monocular simple cell receptive fields shown in the binocular energy model
(Fig. 4). The binocular energy model would predict either no connection or a
very weak connection between cells with such different disparity tuning. D:
neural cross-correlogram normalized by the number of presynaptic spikes
demonstrates a monosynaptic peak (area of peak � 12.6) with the simple cell
as the presynaptic cell. Horizontal gray lines, 3 SDs from the mean (evaluated
from correlation delays between 50 and 100 ms). Vertical dashed gray line, 0
correlation difference. Both cells were recorded from layer 4.
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where the most similar pairs are to the left side of the x axis.
There are different ways of characterizing similarity of tuning.
In Fig. 7A, we use our similarity index. There is a group of
cells with SI 
0.6 (similar, F), and another group with SI
	0.05 (dissimilar, E). The large gap between the groups is a
natural zone of discrimination because the distribution is bi-
modal. The similar group has stronger neural cross-correlation
values compared with the dissimilar group (P � 0.039, Wil-
coxon rank-sum test). It is important to note here that there are

connections between cells with dissimilar tuning, some of them
with nearly opposite tuning profiles, but the strength of these
connections tends to be very weak. We should also point out
that we first made a general comparison for the entire popula-
tion of cells without reference to categories of monosynaptic,
polysynaptic and common input. There were generally no
correlations between parameters of interest. We then used the
classification system on a subpopulation to reveal interesting
correlations between parameters.

Phase and frequency are the two Gabor parameters that
define the shape of disparity tuning. An alternate measure of
similarity is the phase difference in the fitted Gabors (Fig. 7B).
We have drawn the distinction between similar and dissimilar
at a phase difference of 45 because it is near the median value
(i.e., 43) and produces the exact same groupings as shown in
Fig. 7A, so the statistics are the same. The similar pairs in Fig.
7A all have a phase difference of 	45° in Fig. 7B. The pairs
with nearly opposite phase tuning have the weakest cross-
correlograms (E).

A third measure of similarity is based on spatial frequency
difference. The difference in frequency is normalized by the
average frequency. The data are split into similar and dissim-
ilar groups at the median value of 22.5%. The similar group has
a stronger neural cross-correlogram compared with the dissim-
ilar group with larger frequency differences (P � 0.025, Wil-
coxon rank-sum test). The tendency for similar disparity-tuned
pairs to have stronger neural cross-correlograms only holds for
monosynaptic pairs. This relationship is not maintained for
polysynaptic and common input connections as determined by
the same methods used for the data in Fig. 7. Because binocular
disparity tuning is determined by the difference in right and left
RFs, it is possible for a pair of cells to have very different
disparity-tuning properties but have similar monocular tuning.
It is also possible for a pair of cells to have identical disparity
tuning and different monocular RFs in the two eyes. If con-
nectivity between neurons is based on dominant-eye monocu-
lar RF similarity, that does not necessarily translate into dis-
parity-tuning similarity. It is possible that cells with dissimilar
disparity-tuning properties and strong neural cross-correlations
are connected together because of dominant-eye monocular RF
similarity.

Some functional implications

We must consider the possibility that some of the binocular
disparity-tuned cell pairs we have studied may not play a role
in stereopsis. They may be signaling some other aspect of the

FIG. 6. A simple-complex pair with similar disparity tuning but with a flat
cross-correlogram. This is the only data included in the paper with no structure
in the cross-correlogram. It demonstrates that not all pairs with similar tuning
have structure in their cross-correlogram. A: binocular interaction map at
optimal time delay recorded from a simple cell. B: binocular interaction map
at optimal time delay for a complex cell recorded simultaneously with A from
an adjacent electrode (i.e., lateral separation of 250 �m). C: disparity tuning
curves for the simple cell (open circles, the data; dashed line, the Gabor fit) and
complex cell (filled circles, the data; solid line, the Gabor fit) are very similar
(similarity index � 0.71). D: there is no significant structure in the neural
cross-correlogram. Horizontal gray lines, 3 SDs from the mean (evaluated
from correlation delays between 50 and 100 ms). Vertical dashed gray line, 0
correlation difference. The simple cell was recorded from layers 2,3, whereas
the complex cell was in layer 4. The lack of structure in the neural cross-
correlogram may be related to the location of the cells.
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stimulus, such as motion. Stereopsis requires horizontal dis-
parity, which results when cell-orientation preferences are near
vertical. Vertical disparity in natural scenes arises from the
difference in image size created when objects are closer to one
eye. Vertical disparity is useful to the visual system (Backus et
al. 1999; Berends and Erkelens 2001), but it is not necessary
for the perception of depth through stereopsis. Cell pairs tuned
to nearly horizontal orientations (vertical disparities) do not
have a direct perceptual role in stereopsis.

The orientation preference distribution of our cell-pair sam-
ple is shown in Fig. 8. For mono- and polysynaptic pairs, there
is a clear bias in favor of vertical orientations (Fig. 8A). More
cell pairs are tuned to nearly vertical compared with nearly
horizontal orientations. The distribution for common input
connections appears to be different (Fig. 8B). Horizontal and
vertical orientations are equally well represented, but there is a
deficit of oblique orientations. This could be related to the
oblique effect, i.e., human subjects exhibit reduced spatial
resolution for visual detail at oblique orientations (Appelle
1972). There are analogous effects in the visual cortex (Li et al.
2003). For mono- and polysynaptic connections, the bias for
vertical orientations suggests that these cells could be involved

FIG. 7. Monosynaptic neural connections are stronger between pairs of
cells with similar disparity tuning. A: the normalized strength of the cross-
correlogram peak is plotted against the similarity index (SI, as defined in
METHODS), where an SI � 1.0 corresponds to identical pairs and SI � –1.0 are
exact opposites. There is an absence of cells with an SI between 0.05 and 0.6,
so this gap is used to discriminate similar tuning (SI 
 0.6, F) from dissimilar
tuning (SI 	 0.05, E). The similar pairs have a stronger cross-correlation peak
compared with the dissimilar pairs (P � 0.039, Wilcoxon signed-rank). B: the
difference in Gabor phase between the pairs is an alternate measure of
similarity. The pairs with a phase difference of 	45° are the exact same pairs
with a SI 
 0.6. C: a 3rd measure of similarity is the difference in frequency
normalized by the average frequency. The median value is 22.5%. The data are
split into similar and opposite pairs based on the median value. The similar
pairs have a stronger cross-correlogram peak (P � 0.025, Wilcoxon signed-
rank).

FIG. 8. Distributions of optimal orientations for disparity-tuned pairs. Zero
degrees corresponds to horizontal, and 90° is vertical. A: the distribution of
optimal orientations for all mono- and polysynaptic pairs demonstrate a bias in
favor of vertical orientations (P � 0.023, 
2, orientation split into 2 groups)
that encode horizontal disparity used in stereopsis. B: for common input
connections, there is a deficit of oblique orientations (P � 0.02, 
2, orientation
split into thirds).
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in stereopsis. For common input cell pairs, about half are not
likely to be processing stereopsis because they are tuned to
nearly horizontal orientations.

One versus two electrodes

We now consider possible differences between cell pairs
recorded from the same electrode versus those for which neu-
rons are recorded from different electrodes. Same electrode
pairs are presumed to be physically closer together and might
exhibit different RF relationships compared with those from
separate electrodes. Pairs of cells involving at least one simple
cell have slightly different distributions of similarity index
values for same versus different electrode pair samples (Fig. 9).
Same electrode pairs (■ ) can have similar or near quadrature
disparity tuning, but it is rare for them to have opposite tuning,
i.e., large negative values. A quadrature relation is one in
which all parameters are equal except phase, which is 90°
different. Near quadrature tuning has a similarity index near
zero. In terms of similarity index values, the simple and com-
plex cells shown in Fig. 5 and 6, respectively, may be catego-
rized as similar or quadrature types. The pairs recorded from
different electrodes (Fig. 9, �) tend to lack quadrature (only 1
pair with a near 0 SI), are more often nearly opposite and also
more frequently have similar disparity tuning. There are re-
ports that pairs of adjacent simple cells have monocular RFs in
quadrature (Liu et al. 1992; Pollen and Ronner 1981), but other
work establishes that many phase relationships exist between
cell pairs. (DeAngelis et al. 1999). A recent report suggests a
bias for odd and even symmetric spatial phase in visual cortex
(Ringach 2002).

Complex-to-complex cells

The most common type of cell pair in our sample is between
complex cells (n � 27). There is a sufficient number of these
pairs to make some generalizations about connections between
disparity-tuned complex cells. A representative sampling of
complex-to-complex mono- and polysynaptic pairs of dispar-
ity-tuned cells is shown in Fig. 10. An example of an oppo-
sitely tuned monosynaptic pair is shown in Fig. 10A. This pair

has a similarity index of –0.72 due to the obvious phase
difference (164°). There is also a difference in spatial fre-
quency of 0.15 cycle/° in which the presynaptic cell (spike 1)
has the higher value. A polysynaptic example is shown in Fig.
10B. This pair has a phase difference of 91°, but no quadrature
because of other differences in their parameters. The presyn-
aptic cell has the higher spatial frequency (by 0.11 cycle/°).
There is also a position difference; the presynaptic cell is
shifted to the right by 0.3°. The combination of this position
shift and higher spatial frequency content moves the location of
the optimal disparity closer to that of the postsynaptic cell (i.e.,
the positive peaks nearly coincide, in spite of the 90° phase
difference). We would expect a similarity index of 0.0 for a 90°
phase shift, but because of the shift in the optimal disparity due
to spatial frequency and position differences, the similarity
index is 0.58. In Fig. 11C, the presynaptic cell (spike 1) has a
higher spatial frequency (by 0.08 cycle/°) and a fairly large
position shift of 0.8°, which results in alignment of the nega-
tive peaks. A negative peak is excitatory to opposite contrast
visual stimulation, and we assume that same contrast stimula-
tion causes suppression. As a result of this alignment of neg-
ative peaks, the similarity index is 0.66, which is indicative of
a fairly similar pair. In all of the examples presented so far, the
presynaptic cell has a higher disparity frequency. In Fig. 10D,
we present an example in which the presynaptic cell (spike 2)
has a slightly lower disparity frequency by (0.04 cycle/°) and a
much larger size parameter (0.8°). The cross-correlograms in
Fig. 10 are all plotted on the same scale to facilitate amplitude
of the correlation strength comparisons. The example in Fig.
10D has a much stronger correlogram peak compared with the
other examples shown. We observed a wide variety of differ-
ences in the fitted Gabor parameters: phase, position, disparity
frequency, and size. Nonetheless, pairs tend to be either similar
or opposite in tuning based on similarity index. They are
different in ways that tend to bring the peaks or troughs into
alignment.

We expect the distribution of similarity indices to have a
bias in favor of similar pairs because of the physical proximity
of many pairs and the prevalence of monosynaptic connec-
tions. The actual distribution for all complex-to-complex cell
pairs is surprising (Fig. 11A). There is a clearly bimodal
distribution in which pairs can be classified as similar or
opposite in tuning. The distribution is well fit by two Gaussian
functions. For common input connections, similar pairs out-
number opposite pairs; but mono- and polysynaptic pairs are
equally split between similar and opposite pairs. The large
number of opposite pairs is unexpected, and the total absence
of near quadrature pairs (SI � �0) is striking. The strength of
the neural cross-correlograms as a function of similarity index
is shown in Fig. 11B. Our expectation that the opposite pairs
will have weak correlograms does not hold. There is no dif-
ference in cross-correlogram strength between opposite and
similar pairs (P � 0.92 Wilcoxon rank-sum). The expectation
that cells with similar RFs tend to have stronger neural cross-
correlograms is not necessarily borne out.

Fine-to-coarse and coarse-to-fine tuning

In the examples shown in the preceding text, there is a
tendency for the presynaptic cell to have a higher disparity
frequency compared with the postsynaptic cell. To explore this

FIG. 9. Distribution of SI involving 	1 simple cell. The distribution is split
between pairs measured to the same electrode (■ , presumed to be physically
close) and pairs recorded between different electrodes (�, cells that are further
away from each other). Same electrode pairs tend to have either similar tuning
(SI � 1) or near quadrature tuning (SI � 0), with only 1 pair having nearly
opposite tuning (SI � �1). For more distant pairs, there is still a group with
similar tuning, but there is a relative absence of quadrature pairs and more
opposite pairs.
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FIG. 10. Examples of mono- and polysynaptic connections between pairs of complex cells. A: monosynaptic connection
between cells with nearly opposite disparity tuning (SI � �0.72, phase difference of 164°). The presynaptic cell (spike 1) has a
higher frequency (0.35 cycle/°) compared with the postsynaptic cell (0.2 cycle/°). B: polysynaptic connection between cells with
similar disparity tuning (SI � 0.58). The phase difference is 91° for this pair, which means that they would be in quadrature (SI �
0) if the other parameters were equal. However, there is a difference in frequency (presynaptic spike 1 � 0.46 cycle/° and
postsynaptic spike 2 � 0.35 cycle/°) and position (presynaptic spike 1 � 6.0° and postsynaptic spike 2 � 5.7°) that brings the
optimal disparities close together. C: monosynaptic connection between cells with similar disparity tuning (SI � 0.66). This pair
has a phase difference of 43°. The presynaptic cell spike 1 has a higher frequency (0.31 cycle/°) compared with the postsynaptic
cell spike 2 (0.23 cycle/°). There is a position shift of 0.8°, which has the effect of bringing the opposite contrast excitatory
subregions (at 7.25°) in alignment. D: monosynaptic connection between cells with similar disparity tuning (SI � 0.66). This pair
has a phase difference of only 25°. The presynaptic cell spike 2 has a lower frequency (0.17 cycle/°) and larger size parameter (2.1°)
compared with the postsynaptic cell spike 1 (0.21 cycle/° and 1.3°). This pair has a stronger peak in the cross-correlogram compared
with the other pairs shown (12.5 compared with 3.8, 6.0 and 5.6).
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more completely, a population summary for all mono- and
polysynaptic connections is given in Fig. 12A. This is a histo-
gram of the normalized disparity frequency difference in which
HF and LF refer to high and low frequency, respectively. As
the histogram shows, most of the data fall to the left of zero,
indicating that the presynaptic cell has the higher disparity
frequency (P � 0.006, sign test). The mean frequency differ-
ence is 12.3%, but there are a few pairs of cells with large
frequency differences. We expect disparity range (size) to be
correlated to disparity frequency; higher frequency cells should
have smaller RFs. This implies that the disparity range of the
presynaptic cell should be smaller compared with that of the
postsynaptic neuron. The anticipated relationship is confirmed
in Fig. 12B, although there is not as strong an effect as that for
frequency (P � 0.028, sign test). This is consistent with the
observation that the correlation between spatial frequency and

size is affected by the fact that higher frequency cells tend to
have more subregions (DeAngelis et al. 1995).

A central finding of this study is illustrated in Fig. 12C.
When the presynaptic cell has a larger disparity range, it tends
to have a stronger neural cross-correlogram (data to the left of
the vertical dashed line). The strength of cross-correlation is
	10 for nearly all coarse-to-fine pairs, and the values are much
lower for smaller disparity range presynaptic cells (to the right
of 0, fine-to-coarse). Figure 12D shows a disparity frequency-
size correlation, which applies to complex-to-complex cell
connections. When the presynaptic cell is higher in disparity
frequency, it also tends to be smaller in disparity range (size).
There is a spatial frequency-size correlation for complex–to-
complex cell combinations. In summary, there are more pairs
in which the presynaptic cell has higher spatial frequency (a
fine-to-coarse system). Connection strength is stronger when
the presynaptic cell is larger in size (a coarse-to-fine system).
Considered together, these findings suggest that there are both
coarse-to-fine and fine-to-coarse processes at work. A postsyn-
aptic cell that pools across neurons of different spatial fre-
quency content receives a weighted average of its inputs. This
configuration contains pairs of both coarse-to-fine and fine-to-
coarse cell combinations. The system may function as follows.
Pooling over neurons that share a similar peak or trough in
their disparity tuning curves (see Fig. 12, B–D) but vary across
disparity scale (i.e., different disparity frequency and disparity
range) will disambiguate the true disparity and reduce false
matches (Fleet et al. 1996). Coarse disparity scale information
is processed more quickly (Menz and Freeman 2004). When
this is combined with stronger coarse-to-fine connections, it
may establish a bias for coarse information to constrain the
perceived disparity.

D I S C U S S I O N

In the experiments reported here, we have conducted elec-
trophysiological studies of pairs of disparity-tuned cortical
neurons that were recorded simultaneously using different
electrode configurations. Cross-correlogram analysis was car-
ried out for the recorded cell pairs. Pairs were identified that
exhibit excitatory monosynaptic, polysynaptic, or common in-
put types of structure in their neural cross-correlograms.
Monosynaptic pairs, which almost always come from the same
electrode, tend to have stronger cross-correlogram peaks when
their disparity tuning is similar. We find simple-to-complex
cell monosynaptic connections that are consistent with the
binocular energy model, but the sample size is relatively lim-
ited.

Vertical orientation encodes horizontal disparity that is nec-
essary for stereopsis. We find that for mono- and polysynaptic
connections there is a bias for vertical orientations, implying
that these pairs are playing a role in stereopsis. For common
input connections, there is an oblique effect, a deficit of pairs
tuned to oblique orientations, and an equal quantity of hori-
zontal and vertical orientations. Even though all pairs are tuned
to binocular disparity, the common input pairs may be playing
a different functional role.

Cell-pair tuning relationships

Most previous studies of cortical cell cross-correlations sup-
port the idea that neurons with similar RF locations tend to

FIG. 11. Complex-complex connections lack quadrature. A: distribution of
similarity index for complex-complex pairs broken down by mono- and
polysynaptic connections (�) and common input connections (1). There is an
obvious deficit of similarity indices around 0, indicating an absence of quadra-
ture pairs. —, a nonlinear fit to the sum of 2 Gaussian functions (P � 0.0034,
R2� 0.98). The locations of the peaks are at SI � –0.72 and SI � 0.71.
Complex-complex pairs can be described as being either similar or opposite in
their disparity tuning. For poly- and monosynaptic connections, there is an
even split between similar and opposite pairs. For common input connections,
there are 3 times as many similar pairs as opposite pairs. B: there is no
difference in neural cross-correlation strength between opposite and similarly
tuned pairs (P � 0.92, Wilcoxon signed-rank).
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have stronger connections (Alonso and Martinez 1998; Arnett
and Spraker 1981; Brosch and Schreiner 1999; DeAngelis et al.
1999; Ghose et al. 1994b; Hata et al. 1991; Kruger and Aiple
1988; Nelson et al. 1992; Reid and Alonso 1995; Schwarz and
Bolz 1991; Tanaka 1983). One report suggests that the strength
of cross-correlations depends only on lateral cortical distance
and is independent of orientation (Das and Gilbert 1999). This
result is at odds with all other findings that indicate stronger
connections between similar orientation pairs. Our monosyn-
aptic results are consistent with the general trend of stronger
connections between similar pairs. We also find a correlation
between disparity-tuning similarity and cross-correlation
strength, as described in the preceding text.

Some previous reports indicate that adjacent simple cells are
either in quadrature (90 degree phase difference) or anti-phase
(180 degree phase difference) (Liu et al. 1992; Pollen and
Ronner 1981). Their quadrature pairs (13/16, 83–105° differ-
ence as shown previously) (Liu et al. 1992) generally had no
structure in their neural cross-correlogram, whereas the anti-
phase pairs (3/16, 160–194° difference) exhibited mutual in-
hibition. No excitatory connections were found, and one com-
mon input connection was reported between adjacent simple
cells. Other results of recordings from pairs of adjacent simple
cells have shown mono- and polysynaptic excitation and com-
mon input connections (DeAngelis et al. 1999; Ghose et al.
1994a). The phase differences between pairs that were other-
wise similar consisted of all values including 90 and 180° (9/12
are between 120 and 180°, 2 pairs are 	30°, and only 1 pair is
between 90 and 120°) (DeAngelis et al. 1999). This distribu-
tion is clearly not consistent with the quadrature/anti-phase
distribution described previously (Liu et al. 1992). However,
the distribution of spatial phase in visual cortex appears to be
biased toward even and odd symmetry, which would favor
quadrature pairing for connected cells (Ringach 2002). In our
current study, the sample size for simple-to-simple connections
from the same electrode is very small (n � 6). Nonetheless, we
still find all types of neural cross-correlograms: monosynaptic,
polysynaptic, and common input.

Disparity quadrature is very different from monocular RF
quadrature. Disparity tuning is determined by the relationship
between left and right eye RFs. If responses of a pair of cells
show quadrature for both left and right eye RFs, their disparity
tuning is the same (binocular energy model subunits). Similar
disparity tuning does not imply similar monocular RF tuning.
It means that there is a similar relationship between left and

FIG. 12. Frequency and size relationships of mono- and polysynaptic pairs.
A: the distribution of the difference in frequency between the pairs normalized
by the average frequency of the pair. To the left of - - -, the presynaptic cell has
a higher frequency, whereas to the right, the presynaptic cell has a lower
frequency. The dominant direction is from higher to lower frequency (P �
0.0063, sign test). B: the distribution of the difference in size between the pairs
normalized by the average size of the pair. To the left of - - -, the presynaptic
cell has a larger size, whereas to the right, the presynaptic cell has a smaller
size. The dominant direction is from smaller size to larger size (P � 0.028, sign
test). C: the strength of the neural cross-correlation as a function of the size
difference shown in B. When the presynaptic cell is larger in size, the
cross-correlation tends to be stronger (P � 0.0028, Wilcoxon signed-rank). D:
for complex-to-complex cells only, there is a disparity-frequency disparity
range (size) correlation. The change in frequency is plotted against the change
in size. When the presynaptic cell is lower in frequency, it also tends to be
larger in size compared with the postsynaptic cell. Conversely, if the presyn-
aptic cell is higher in frequency, then it also tends to be smaller in size
compared with the postsynaptic cell (robust regression, P � 0.003).
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right eye RFs. If a pair of cells have one eye’s RFs in quadra-
ture but the other eye’s RFs have the same (or opposite) tuning,
that will produce quadrature in disparity tuning. If there were
only quadrature and anti-phase monocular relationships, that
limits the possible disparity relationships to similar tuning and
quadrature tuning. If we expand our sample to include connec-
tions between simple and complex, in addition to simple with
simple, then we have a reasonable sample size (n � 18 for
same electrode, n � 14 for different electrode, Fig. 9). We find
that for same electrode pairs the distribution includes both
similar tuning and near quadrature tuning. There are other
ways of generating this kind of distribution besides quadrature/
anti-phase monocular RFs, but the data are consistent with that
hypothesis. The distribution for pairs from different electrodes
appears to lack quadrature. This also supports the hypothesis
that there is a special quadrature relationship between nearby
cells. Quadrature disparity tuning relationships among physi-
cally nearby simple cells may be more common than monoc-
ular RF quadrature. The three binocular simple cell examples
shown previously (DeAngelis et al. 1999) are in near quadra-
ture (i.e., similarity indices close to zero) for their disparity
tuning but not in their monocular RFs.

Our pairs of complex cells tend to have either similar or
opposite tuning with an obvious lack of quadrature. The main
peaks and troughs in the disparity tuning curves tend to be
aligned, which creates the biphasic distribution. It is not the
case that the phase difference is always 0 or 180° with the other
parameters being equal. The distribution includes all three
types of neural cross-correlations.

Monocular quadrature and similarity of disparity tuning is
the basis for the binocular energy model, but what function is
served by disparity quadrature and opposite disparity tuning? If
a cell pools over disparity-tuned subunits in quadrature fol-
lowed by a half-squaring nonlinearity, then the postsynaptic
cell will respond to all disparities just as a complex cell
responds to all monocular phases. We find some complex cells
that are clearly binocular but are not disparity selective. They
may be the same population of complex cells that does not
exhibit phase-specific binocular interaction to dichoptically
presented gratings (Ohzawa and Freeman 1986). This dispar-
ity-energy model consists of subunits in which some pairs have
opposite disparity tuning, whereas other pairs have quadrature
disparity tuning. This potentially explains the presence of
quadrature and opposite pairs but not why the subunits are
connected to each other in an excitatory manner. It could be
that this connectivity is based on monocular relationships. The
energy model may represent a cortical building block repli-
cated at higher levels of signal processing.

Spatial pooling

To solve the global stereo correspondence problem it is
desirable to combine information across spatial scale (Marr and
Poggio 1979). Low-frequency cells can respond to a large
range of disparities but with poor resolution. High-frequency
neurons have good resolution but limited range. The original
idea was that the solution at coarse scales would shift (with or
without eye movement) the range of high-frequency neurons.
This particular implementation of coarse-to-fine called “shift-
ing” is not likely to occur (Rohaly and Wilson 1993; Smallman
and MacLeod 1997). However, the basic and appealing notion,

developed in the preceding paper (Menz and Freeman 2004) is
that a coarse-to-fine mechanism operates such that a solution at
a coarse spatial scale occurs more quickly and constrains one
at higher frequencies. The current study of characteristics of
cell pairs complements that of dynamics (Menz and Freeman
2004) by showing that coarse-to-fine connections are relatively
stronger than fine-to-coarse types.

Our study shows that the presynaptic cell more frequently
has a higher disparity frequency and smaller disparity range
(fine-to-coarse) compared with the postsynaptic cell. However,
when the presynaptic cell has a larger disparity range (coarse-
to-fine), the connection strength tends to be much stronger
compared with the more common situation with a presynaptic
cell that has a smaller range. Thus the fine-to-coarse connec-
tion is more common, but the coarse-to-fine connection is
stronger. We propose that pooling across spatial scale can
explain both types of connection. The postsynaptic cell has
disparity tuning that is a weighted sum of its inputs. More
weight is given to the less common coarse-to-fine connection;
less weight is given to the more common fine-to-coarse con-
nection. Both coarse-to-fine and fine-to-coarse mechanisms
coexist with disparity averaging. The psychophysics literature
contains studies supporting coarse-to-fine (Glennerster 1996;
Rohaly and Wilson 1993; Watt 1987; Wilson et al. 1991) and
fine-to-coarse processing (Smallman 1995) and disparity aver-
aging (Rohaly and Wilson 1994). Certain tasks may emphasize
particular pathways, but all three mechanisms are compatible.
Pooling across spatial scale is desirable to disambiguate dis-
parity signaled by one cell (Fleet et al. 1996). If there is a
temporal bias for low frequencies having shorter latencies, then
pooling across scale also produces a temporal coarse-to-fine
mechanism as described in the preceding paper (Menz and
Freeman 2004).
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