
Practical Database Encryption Scheme for

Database-as-a-Service

Hankyu Joo
1

1 Dept. of Computer Engineering, Hallym University,

Chuncheon, Korea

hkjoo@hallym.ac.kr

Abstract. Database-as-a-Service (DBaaS) allows clients to use expensive

database management system without purchasing it. In DBaaS environment,

database tables are stored at provider’s server. Since the database tables are

stored at servers, the tables need to be encrypted to have data confidentiality.

However, the encryption of data introduces performance degradation in

executing queries over encrypted data. Especially executing range queries faces

severe performance degradation. In this paper, a new database encryption

scheme for DBaaS is proposed. The scheme allows range queries without

severe performance degradation and without information leaks except order

information.

Keywords: database as a service, database encryption, order preserving

encryption.

1 Introduction

Nowadays computing as a service is gaining its ground. Clients may use the service

without purchasing the system supporting the service. One of the area of computing

as a service is Database-as-a-service (DBaaS). With DBaaS, clients may use

expensive database management system without purchasing the system.

In DBaaS, clients store their data at servers which belong to the service providers.

The servers are not under the control of clients. There is no guarantee of

confidentiality of the data stored at the servers. The clients need to encrypt the data to

have data confidentiality. However, the encryption of data introduces performance

degradation in executing queries over encrypted data. To execute a range query, the

server need to decrypt each of the items encrypted to find out whether the item is in

the range. Since the index is maintained on the encrypted data, the index may not be

used for performance enhancement.

Several approaches have been proposed to alleviate the performance degradation.

To alleviate the performance degradation, the server should be able to perform the

order comparison without the decryption of the encrypted items. To allow the server

to perform order comparison without decryption, Order Preserving Encryption (OPE)

schemes have been proposed. Some of the proposed OPE schemes allow servers to

perform order comparison without decryption, but they leaks information besides

Advanced Science and Technology Letters
Vol.93 (Security, Reliability and Safety 2015), pp.34-39

http://dx.doi.org/10.14257/astl.2015.93.08

ISSN: 2287-1233 ASTL
Copyright © 2015 SERSC

order. Other schemes require the server to perform operations which are not database

operations. The server should support such operations.

In this paper, database encryption scheme without severe performance degradation

is proposed. The proposed scheme only leaks the order to the adversary and uses only

database operation of the server.

2 Related Works

There has been a large amount of work on database encryption. Database encryption

has been faced with severe performance degradation in range query. The work on

database encryption has been mainly about relieving the performance degradation.

OPE was suggested for database encryption by Agrawal et al. [1] to relieve the

performance degradation. Since the introduction of OPE by [1], a lot of work has

been done about OPE [2, 3, 4, 5]. OPE allows the encryption function preserves the

numerical ordering of the plaintexts. Similar scheme called order preserving encoding

is also proposed [6]. Order preserving encoding scheme maintains tree-structured

order information at server. As indicated in [6], most of the proposed OPE schemes

leak information besides order. The other scheme proposed in [6] requires operations,

which are not general database operations, performed on the server.

3 Proposed Scheme

3.1 Consideration

The design of a new scheme is based on the following consideration. In DBaaS, all

database tables are stored in the server. The cost of storage is not expensive. Database

tables are initialized with many items. Query operations are frequent operation.

Inserting an item is not frequent. Indexing is used to improve the query speed. The

server is accessed by database operation interfaces.

3.2 Database Encryption Scheme

The proposed scheme uses an extended table. When a table is created and placed in a

server, each sensitive column (x) of a database table is encrypted (eX) and an

additional order column (oX) is added. The encryption may be performed by any

existing secure encryption algorithm such as AES [7]. The order column (oX) is used

to maintain the order of the sensitive column (x). Suppose that an item, m, has a value

xm in column x and oXm in column oX. And also suppose that an item, n, has a value xn

in column x and oXn in column oX. If xm < xn then oXm < oXn. When a table is created,

the order column has a big interval. Although xn is next to xm in order, oXn. - oXm is not

Advanced Science and Technology Letters
Vol.93 (Security, Reliability and Safety 2015)

Copyright © 2015 SERSC 35

1 but large numbers such as 100. Indexes are used whenever necessary. For example,

consider an employee table as Table 1.

Table 1. employee table in plaintext.

ID Name Title Salary

650213-1234567 Hankyu Joo Manager 14,000

690313-2345678 Sangmin Han Programmer 12,000

700225-1234567 Jaewook Choi Programmer 15,000

 …. …. …. ….

ID column and Salary column contain confidential information. To give security,

items in ID column and Salary column are encrypted. Column names are renamed as

eID and eSalary as Table 2. oID column and oSalary column are also added to have

order information of ID and Salary.

Table 2. employee table in ciphertext..

eID Name Title eSalary oID oSalary

eX12Klm Hankyu Joo Manager tyK3xDs 200 600

jMcD38h Sangmin Han Programmer wQ1B0ld 700 300

y08b1xK Jaewook Choi Programmer d2IpRz9 2100 900

 …. …. …. …. .… ….

 Indexes are created for eID, eSalary, oID and oSalary column.

For the original table, range query may be performed. For example the following

query may be performed to get names of salary between 12,000 and 15,000. Salary

column may be indexed to improve the query speed.

Select Name

from employee

where Salary >= 12,000 and Salary <= 15,000

If the Salary column is encrypted as eSalary column and if oSalary column

maintains the order of Salary, the query should be modified as follows.

Select Name

from employee

where

oSalary >= minLarge(employee, eSalary, oSalary, 12,000)

 and

oSalary <= maxSmall(employee, eSalary, oSalary, 15,000)

The function minLarge(table, field, order, value) is used to get the order (oSalary)

of an item which has the minimum field in plaintext (Salary) larger than value

(12,000). The function maxSmall(table, field, order, value) is used to get the order

(oSalary) of an item which has the maximum field in plaintext (Salary) smaller than

value (15,000). The function minLarge(table, field, order, value) is as follows.

Advanced Science and Technology Letters
Vol.93 (Security, Reliability and Safety 2015)

36 Copyright © 2015 SERSC

int minLarge(TableName eTable, ColumnName field,

ColumnName order, int value) {

 int min = select MIN(order) from eTable;

 int max = select MAX(order) from eTable;

 return internalMinLarge(eTable, field, order, min, max,

 value);

}

int internalMinLarge(TableName eTable, ColumnName field,

ColumnName order, int min, int max, int value) {

 int dF, oX;

 if (min >= max) return min;

 int mid = (min+max)/2;

 (dF, oX) = select decrypt(field), order

 from eTable

 where order >= mid

 order by order

 limit 1;

 if (value == dF) return oX;

 else if (value < oX) return internalMinLarge(eTable,

 field, order, min, mid-1, value);

 else return internalMinLarge(eTable, field, order,

 oX+1, max, value);

}

The function minLarge(table, field, order, value) is as follows.

int maxSmall(TableName eTable, ColumnName field,

ColumnName order, int value) {

 int min = select MIN(order) from eTable;

 int max = select MAX(order) from eTable;

 return internalMaxSmall(eTable, field, order, min, max,

 value);

}

int internalMaxSmall(TableName eTable, ColumnName field,

ColumnName order, int min, int max, int value) {

 int dF, oX;

 if (min >= max) return max;

 int mid = (min+max)/2;

 (dF, oX) = select decrypt(field), order

 from eTable

 where order <= mid

 order by order DESC

 limit 1;

 if (value == dF) return oX;

 else if (value < oX) return internalMaxSmall(eTable,

Advanced Science and Technology Letters
Vol.93 (Security, Reliability and Safety 2015)

Copyright © 2015 SERSC 37

 field, order, min, oX-1, value);

 else return internalMaxSmall(eTable, field, order,

 mid+1, max, value);

}

When a new item is inserted, a value for the order column should be calculated.

The value of order column for the new item is the middle value of the neighboring

two order values.

Since the encryption of a column uses existing secure encryption algorithm, this

scheme leaks only order information. This scheme uses only standard query

operations to access the server. This scheme does not require any change in server.

The performance of range query is O(m), where m is the number of selected items.

Without any order information, the performance of range query on encrypted column

is O(n), where n is the number of total items in the table. By adding the order column

to the encrypted column, the performance of the range query on the encrypted column

can be improved to O(m+logn). If many items are inserted at a specific range of value,

the order column may be restructured. By inspecting order column periodically,

clients may know the status of order column.

4 Conclusion

In this paper, a new scheme for database encryption is proposed. The proposed

scheme may be implemented on the clients’ side only without requiring any change to

the server side. The proposed scheme does not leak any information except the order

of the encrypted field. The proposed scheme may perform a range query on the

encrypted column without severe performance degradation. The proposed scheme

requires addition columns to the encrypted table. However, the additional storage for

the additional column is not expensive in DBaaS environment. The proposed scheme

requires periodic inspection of the order column and restructuring of the column if

necessary. However, database insertion is not frequent operation, restructuring may

only be necessary when the original table is under major update.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order Preserving Encryption for Numeric Data.

ACM SIGMOD, pp. 563--574. (2004)

2. Boldyreva, A., Chenette, N., Lee, Y., O’Neil, A: Order Preserving Symmetric Encryption.

Eurocrypt, LNCS 5479, pp. 224--241. (2009)

3. Boldyreva, A., Chenette, N., O’Neil, A: Order Preserving Symmetric Encryption Revisited:

Improved Security Analysis and Alternative Solutions. Crypto 2011, LNCS 6841, pp. 578--

595. (2011)

4. Yum, D., Kim, D., Kim, J., Lee, P., Hong, S.: Order-Preserving Encryption for Non-

Uniformly Distributed Plaintexts. WISA 2011, LNCS 7115. 84--97. (2012).

Advanced Science and Technology Letters
Vol.93 (Security, Reliability and Safety 2015)

38 Copyright © 2015 SERSC

5. Liu, D., Wang, S.: Nonlinear Order Preserving Index for Encrypted Database Query in

Service Cloud Environments. Concurrency and Computation: Practice and Experience, 25,

pp. 1967--1984. (2013).

6. Popa R.A., Li, F.H., Zeldovich N.: An Ideal-Security Protocol for Order-Preserving

Encoding. IEEE Symposium on Security and Privacy, pp. 463--477. (2013)

7. National Institute of Standard and Technology: Advanced Encryption Standard (AES). FIPS

PUB 197. (2001)

Advanced Science and Technology Letters
Vol.93 (Security, Reliability and Safety 2015)

Copyright © 2015 SERSC 39

