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Abstract. We discuss about efficient algorithms for obtaining the centroid 

direction for each of the three types of monotonicity in a polyhedron. Strongly- 

and directionally-monotone centroids are shown to be obtained by applying the 

previous result. This paper focuses on developing an efficient method for 

approximating the weakly-monotone centroid. 
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1   Introduction 

Three types of a polyhedron monotonicity: strong, weak, and directional monotonicity 

have been characterized as geometric problems to find great circles separating or 

intersecting a set of spherical polygons that are derived from sub-surfaces of the 

polyhedron and its convex hull [1]. Consequently, all directions for the three 

monotonicities can be constructed in )loglog( nnknkO 

 
time, where n

 
and 

k

 
are the numbers of all faces and all sub-surfaces, respectively. 

In this paper, we consider efficient algorithms for finding a centroid of all 

monotone directions, which will be called the monotone centroid in short, in a 

polyhedron. The centroid in a set of directions is defined so as to maximize the 

minimum distance between the centroid and all directions in the set. 

The strongly- and directionally-monotone centroids can be obtained by directly 

applying a discrete algorithm [2] that approximates centroids among great circles 

maximally intersecting a set of spherical polygons. The weakly-monotone centroid 

will be efficiently approximated in )( nO  time by intersecting other spherical 

objects called great bands instead of non-convex spherical regions. 
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2   Notations and Definitions 

The space on the boundary of the unit sphere centered at origin in three 

dimension is described as }1|{
2

 ppS . A point p  on 2
S   is a unit 

vector in 3 dimensional Euclidean space 3
E . 

A circle on 2
S  is determined by the intersection of the unit sphere with a plane. 

If the plane contains the origin, the intersection is called a great circle; otherwise, it is 

called a small circle. The circle is denoted by }cos|{),(   xpxpCr . We call 

p  the pole of the circle, and   the size of the circle. 

The great band bounded by two circle on 2
S is denoted by 

}coscos|{),,(
ullu

xpxpGB   , where 
2


 

l
 and 

2


 

u
. The 3D space 

bounded by planes passing the two circles with 

},coscos|{),,(
3

ExxpxpSp
ullu

  , 

The set },...{
1 n

uuU   of outward unit normal vectors of a surface F  is called 

the Gaussian map of F . The spherical convex hulls of the Gaussian map of F  will 

be denoted by )(FGCH . The visibility map of F  is the set of directions visible to 

F . 

3   Approximating Weakly-Monotone Centroids in a Polyhedron 

Monotone directions of a polyhedron can be characterized with the sub -surfaces 

of the polyhedron: pockets, lids, sub-pockets, and sub-lids. Weakly-monotone 

directions can be established by finding great circles intersecting a set of 

visibility polygons of sub-pockets and sub-lids of a polyhedron (Lemma 6 in 

[1]). Intersecting a set of spherical polygons is complementary to separating the 

set of spherical polygons. The poles of great circles separating a visibility 

polygon are the complement of its positive and negative duals . 

We introduce two circles bounding a convex polygon; in-circle and circum-circle, 

which are the largest circle within the polygon and the smallest circle enclosing the 

polygon, respectively. When we replace a polygon with its bounding circle, the non-

convex region that is the complement of two polygons is approximated with a convex 

object called the great band, as illustrated in Figure 2. The in-circle approximation 

can be used for the feasibility test since it is a necessary condition for the original 

solutions, while the circum-circle is used for a sufficient approximation such as 

finding the centroid among solutions. 

The approximately reduced problem of intersecting great bands is considered under 

the extension of the geometric space from 2
S  space into 3D space. It is obvious that 

the intersection of a set of bands on 2
S  is empty (  ),,(

ii
lui

pGB ), if and only 

if the closed convex polyhedron yielded by ),,(
ii

lui
pSp   is completely enclosed 

by 2
S . In order to check without constructing all boundary of ),,(

ii
lui

pSp  , we 
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find its extreme point with a maximizing problem: maximize 
2

x  subject to all
 

)},,({
ii

lui
pSp  . After determining the extreme point *

x  of ),,(
ii

lui
pSp  , a 

simple test 
1

2
*

x
 is performed. 

The centroid of ),,(
ii

lui
pGB   is the center of circle inscribing the solution 

region of ),,(
ii

lui
pGB  , the boundary of which is composed of the parts of small 

circles ),(
ii luii

orporpCr  . In other words, a weakly-monotone centroid can be 

obtained by computing the center of an inscribing circle. We can get a reduced 

problem for weakly-monotone directions in a polyhedron, which can be solved in 

)( nO  time by linear programming [3], as the following Lemma. 

 

Lemma 1 The unit vector of a solution *
x maximizing 2

x  subject to all
 

)},,({
ii

lui
pSp   is the centroid of ),,(

ii
lui

pGB  . 

 

The next discussion is how to construct the two bounding circles: in-circle and 

circum-circle. The circum-circle that is sometimes called the smallest enclosing circle 

in 2D can be constructed with a simpler formulation in an efficient )( nO  time [4]. 

The circum-circle bounding a spherical polygon on 2
S   can be obtained by 

constructing the smallest sphere enclosing a set of points in 3D as the following 

Lemma. 

 

Lemma 2 The intersection of 2
S  and the smallest sphere enclosing the vertices of 

a polygon is the circum-circle of the polygon. 

 

Finding the three edges of a convex polygon in 3D for its in-circle is a 

combinatorial problem up to 
3

C
n

 circles may be tangential to three of n  edges 

in the polygon. Even though there is an optimal )log( nn  algorithm [5] for this 

problem, we can get the in-circle in )( nO on 2
S  by using the surprising result [6]; 

the in-circle of a polygon is complement of its circum-circle on 2
S , where two 

circles ),(
11

pCr  and ),(
22

pCr  on 2
S   are said to be complementary to each 

other if 
21

pp   and 2/
21

  . 

4   Results 

By using Lemma 1 and 2, we can construct an efficient algorithm for obtaining the 

weakly-monotone centroid with the sub-pockets and sub-lids of a polyhedron can be 

constructed as. 

 

procedure WeaklyMonotoneCentroid 

input: the sub-pockets }{
i

SP  and the sub-lids }{
j

SL  of P  
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output: the weakly-monotone centroid of P  

step 1. For each ji , , compute )}({
jkin

SLFSPGCH  , 

where 
jk

SLF is each face 
j

SL . 

step 2. For each n , determine the smallest ),(
C

nn
pCr   enclosing 

n
GCH  [4,7,8]. 

step 3. Find the extreme I
x  of ),,(

I

n

I

nn
pSp    with LP [3,9,10], 

where C

n

I

n
  2/ . 

step 4. If 1
2


I

x  then, terminate with the result of infeasibility. 

step 5. Find the extreme C
x  of ),,(

C

n

C

nn
pSp    with LP [3,9,10]. 

endProcedure WeaklyMonotoneCentroid 
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