Computing Approximate Centroids in a Polyhedron

Jong-Sung Ha¹, Gyu-Jung Lee² and Kwan-Hee Yoo³

 ¹ Woosuk University, Game and Contents, 490 Samryeup, Wanjugun, Chonbuk, Korea Jong-Sung Ha, jsha@woosuk.ac.kr
² Chungbuk National University, Computer Education,
52 Naesudong-ro, Seowon-Gu, Cheongju Chungbuk 362-763, Korea Gyu-Jung Lee, monaleeok@naver.com
³ Chungbuk National University, Software Engineering,
52 Naesudong-ro, Seowon-Gu, Cheongju Chungbuk 362-763, Korea Kwan-Hee Yoo, khyoo@chungbuk.ac.kr

Abstract. We discuss about efficient algorithms for obtaining the centroid direction for each of the three types of monotonicity in a polyhedron. Stronglyand directionally-monotone centroids are shown to be obtained by applying the previous result. This paper focuses on developing an efficient method for approximating the weakly-monotone centroid.

Keywords: Polyhedron Monotonicity, Centroid Direction, Spherical Algorithm

1 Introduction

Three types of a polyhedron monotonicity: *strong*, *weak*, and *directional monotonicity* have been characterized as geometric problems to find great circles *separating or intersecting* a set of spherical polygons that are derived from sub-surfaces of the polyhedron and its convex hull [1]. Consequently, all directions for the three monotonicities can be constructed in $O(nk \log k + n \log n)$ time, where *n* and *k* are the numbers of all faces and all sub-surfaces, respectively.

In this paper, we consider efficient algorithms for finding a centroid of all monotone directions, which will be called the *monotone centroid* in short, in a polyhedron. The centroid in a set of directions is defined so as to maximize the minimum distance between the centroid and all directions in the set.

The strongly- and directionally-monotone centroids can be obtained by directly applying a discrete algorithm [2] that approximates centroids among great circles maximally intersecting a set of spherical polygons. The weakly-monotone centroid will be efficiently approximated in O(n) time by intersecting other spherical objects called *great bands* instead of non-convex spherical regions.

ISSN: 2287-1233 ASTL Copyright © 2014 SERSC

2 Notations and Definitions

The space on the boundary of the unit sphere centered at origin in three dimension is described as $S^2 = \{p \mid ||p|| = 1\}$. A point p on S^2 is a unit vector in 3 dimensional Euclidean space E^3 .

A circle on S^2 is determined by the intersection of the unit sphere with a plane. If the plane contains the origin, the intersection is called a *great circle*; otherwise, it is called a *small circle*. The circle is denoted by $Cr(p,\theta) = \{x \mid p \bullet x = \cos \theta\}$. We call p the *pole* of the circle, and θ the size of the circle.

The great band bounded by two circle on s^2 is denoted by $GB(p, \theta_u, \theta_l) = \{x \mid \cos \theta_l \le p \bullet x \le \cos \theta_u\}$, where $\theta_l > \frac{\pi}{2}$ and $\theta_u < \frac{\pi}{2}$. The 3D space bounded by planes passing the two circles with $Sp(p, \theta_u, \theta_l) = \{x \mid \cos \theta_l \le p \bullet x \le \cos \theta_u, x \in E^3\}$,

The set $U = \{u_1, ..., u_n\}$ of outward unit normal vectors of a surface $\not\subset$ is called the *Gaussian map* of $\not\subset$. The spherical convex hulls of the Gaussian map of $\not\subset$ will be denoted by *GCH* ($\not\subset$). The visibility map of $\not\subset$ is the set of directions visible to $\not\subset$.

3 Approximating Weakly-Monotone Centroids in a Polyhedron

Monotone directions of a polyhedron can be characterized with the sub-surfaces of the polyhedron: pockets, lids, sub-pockets, and sub-lids. Weakly-monotone directions can be established by *finding great circles intersecting a set of visibility polygons* of sub-pockets and sub-lids of a polyhedron (Lemma 6 in [1]). Intersecting a set of spherical polygons is *complementary* to separating the set of spherical polygons. The poles of great circles separating a visibility polygon are the complement of its positive and negative duals.

We introduce two circles bounding a convex polygon; *in-circle* and *circum-circle*, which are the largest circle within the polygon and the smallest circle enclosing the polygon, respectively. When we replace a polygon with its bounding circle, the non-convex region that is the complement of two polygons is approximated with a convex object called the *great band*, as illustrated in Figure 2. The in-circle approximation can be used for the feasibility test since it is a *necessary* condition for the original solutions, while the circum-circle is used for a *sufficient* approximation such as finding the centroid among solutions.

The approximately reduced problem of intersecting great bands is considered under the extension of the geometric space from s^2 space into 3D space. It is obvious that the intersection of a set of bands on s^2 is empty $(\bigcap_{B} (p_i, \theta_{u_i}, \theta_{l_i}) = \phi)$, if and only if the closed convex polyhedron yielded by $\bigcap_{B} (p_i, \theta_{u_i}, \theta_{l_i})$ is completely enclosed by s^2 . In order to check without constructing all boundary of $\bigcap_{B} (p_i, \theta_{u_i}, \theta_{l_i})$, we

Advanced Science and Technology Letters Vol.73 (FGCN 2014)

find its extreme point with a maximizing problem: maximize $||x||^2$ subject to all $\{Sp(p_i, \theta_{u_i}, \theta_{l_i})\}$. After determining the extreme point x^* of $\bigcap Sp(p_i, \theta_{u_i}, \theta_{l_i})$, a simple test $||x^*||^2 < 1$ is performed.

The centroid of $\bigcap_{GB} (p_i, \theta_{u_i}, \theta_{l_i})$ is the center of circle inscribing the solution region of $\bigcap_{GB} (p_i, \theta_{u_i}, \theta_{l_i})$, the boundary of which is composed of the parts of small circles $C_{\Gamma} (p_i, o_{\Gamma} - p_i, \theta_{u_i}, o_{\Gamma} \theta_{l_i})$. In other words, a weakly-monotone centroid can be obtained by computing the center of an inscribing circle. We can get a reduced problem for weakly-monotone directions in a polyhedron, which can be solved in O(n) time by linear programming [3], as the following Lemma.

Lemma 1 The unit vector of a solution x^* maximizing $||x||^2$ subject to all $\{S_P(p_1, \theta_{w_1}, \theta_{v_2})\}$ is the centroid of $\bigcap_{B} G_B(p_1, \theta_{w_1}, \theta_{v_2})$.

The next discussion is how to construct the two bounding circles: in-circle and circum-circle. The circum-circle that is sometimes called *the smallest enclosing circle* in 2D can be constructed with a simpler formulation in an efficient O(n) time [4]. The circum-circle bounding a spherical polygon on s^2 can be obtained by constructing *the smallest sphere* enclosing a set of points in 3D as the following Lemma.

Lemma 2 The intersection of s^2 and the smallest sphere enclosing the vertices of a polygon is the circum-circle of the polygon.

Finding the three edges of a convex polygon in 3D for its in-circle is a combinatorial problem up to ${}_{n}C_{3}$ circles may be tangential to three of n edges in the polygon. Even though there is an optimal $\theta(n \log n)$ algorithm [5] for this problem, we can get the in-circle in O(n) on S^{2} by using the surprising result [6]; the in-circle of a polygon is complement of its circum-circle on S^{2} , where two circles $Cr(p_{1}, \theta_{1})$ and $Cr(p_{2}, \theta_{2})$ on S^{2} are said to be *complementary* to each other if $p_{1} = p_{2}$ and $\theta_{1} + \theta_{2} = \pi/2$.

4 Results

By using Lemma 1 and 2, we can construct an efficient algorithm for obtaining the weakly-monotone centroid with the sub-pockets and sub-lids of a polyhedron can be constructed as.

procedure WeaklyMonotoneCentroid **input:** the sub-pockets $\{SP_i\}$ and the sub-lids $\{SL_i\}$ of P

Copyright © 2014 SERSC

output: the weakly-monotone centroid of *P*

step 1. For each i, j, compute $\{GCH_{i}(SP_{i} \cup SLF_{j})\}$,

where SLF_{jk} is each face $\in SL_j$.

step 2. For each *n*, determine the smallest $Cr(p_n, \theta_n^c)$ enclosing GCH_n [4,7,8].

step 3. Find the extreme x' of $\bigcap Sp(p_n, \theta_n^T, \pi - \theta_n^T)$ with LP [3,9,10],

where
$$\theta_n^I = \pi / 2 - \theta_n^C$$
.

step 4. If $||x'||^2 < 1$ then, terminate with the result of infeasibility.

step 5. Find the extreme x^{c} of $\bigcap Sp(p_{n}, \theta_{n}^{c}, \pi - \theta_{n}^{c})$ with LP [3,9,10].

endProcedure WeaklyMonotoneCentroid

Acknowledgments. This research was partially supported by Woosuk University and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2014R1A1A2055379).

References

- 1. J.S. Ha and K.H. Yoo.: Characterization of polyhedron monotonicity. Computer-Aided Design, vol. 38, no. 1, pp. 48-54 (2006).
- 2. J.S. Ha and K.H. Yoo.: Approximating centroids for the maximum intersection of spherical polygons. Computer-Aided Design, vol. 37, no. 8, pp. 783-790 (2005).
- 3. M.E. Dyer.: Linear time algorithms for two- and three-variable linear programs. SIAM. Journal on Computing, vol. 13, no. 1, pp. 31-45 (1984).
- E. Welzel.: Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer Science, Springer Lecture Notes in Computer Science, vol. 555, pp. 359-370 (1991).
- 5. G.T. Toussaint.: Computing largest empty circles with location constraints. International Journal of Computer and Information Sciences, vol. 12, no. 5, pp. 347-358 (1983).
- 6. J.G. Gan, T.C. Woo and K. Tang.: Spherical maps: their construction, properties, and approximation. ASME J. Mechanical Design, vol. 116, pp. 357-363 (1994).
- 7. N. Capens's implementation of [6], http://www.flipcode.com/archives/Smallest_Enclosing _Spheres.shtml.
- CGAL implementation, http://www.cgal.org/Manual/latest/doc_html/cgal_manual/ Bounding_volumes_ref/ Class_Min_sphere_of_spheres_d.html.
- 9. M. Hohmeyer's implementation of [9], ftp://icemcfd.com/pub/linprog.a.
- CGAL implementation, http://www.cgal.org/Manual/latest/doc_html/cgal_manual/QP _solver/Chapter _main.html.