
Advanced Science and Technology Letters
Vol.46 (Games and Graphics 2014), pp.279-284

http://dx.doi.org/10.14257/astl.2014.46.59

Classification and Summarization of Software
Refactoring Researches: A Literature Review Approach

Mesfin Abebe and Cheol-Jung Yoo

Chonbuk National University, South Korea
567 Baekje-daero, Deokjin-gu, Jeonju-si,

Jeollabuk-do, Republic of Korea
mesfinabha@gmail.com, cjyoo@jbnu.ac.kr

Abstract. Software refactoring is a technique that transforms a program to
improve its internal structure, design, simplicity, understandability or other
features without affecting its external behavior. Researchers have studied the
different angles of the refactoring activity to develop knowledge. Currently,
there is an accumulation of knowledge which needs classification and
summarization. We collected and studied refactoring research papers published
since 1999 to classify and summarize. This can is help to reveal the research
pattern, common concerns, and statistics to formulate better research topics.

Keywords: Software refactoring, Code smell, Design patterns, refactoring tool.

1 Introduction

In the real-world, it is obvious for software to evolve over time to adapt the dynamic
environment, therefore software enhancement, modification and adaptation becomes
more complex [1, 2, 3, 4]. As the Lehman’s stated, the functionality increment in a
system always brings a decrease in the quality and an increase in the internal
complexity [5, 6]. The branch of software engineering that addresses these problems
is called software refactoring [7, 8, 9,10]. This study examined software refactoring
research papers from digital libraries such as IEEE Xplore, ScienceDirectory, ACM,
Springer and Web of knowledge and classified based on their content to identify how
far each group studied. The reminder of the paper structured as follows: Section 2
describes the background. Section 3, explains the research method. Section 4;
provides the results and Section 5 previews future trends and conclusion.

2 Research Background

Tom Mens provided an overview of existing research area in the field of software
refactoring such as: refactoring activities, techniques and formalism, types of software
artifacts and refactoring and software process [11]. Karim O. Elish et al. proposed a
classification of refactoring methods based on their measurable effect on software

ISSN: 2287-1233 ASTL
Copyright © 2014 SERSC

280 Copyright © 2014 SERSC

Advanced Science and Technology Letters
Vol.46 (Games and Graphics 2014)

quality attributes [12]. Another study done by Bart Du Bois et al. use research
questions: what technique to use, how to apply in a scalable way, dependency between
refactorings, refactoring at high level of abstraction, and how to compare refactoring
tools and techniques [13]. This study investigates research papers published since
1999 and classify and summarize.

3 Research Methodology

3.1 Data Collection Procedure

A total of 467 papers are downloaded from IEEE Xplore (76), ScienceDirect (81),
Springer Link (96), ACM DL Digital (156) and Web of Science (58 papers). To
narrow down the result the query filtered to: Journal or Conference, English papers,
papers since 1999 and match only the Title or/and Abstract. All Titles and Abstracts
are comprehensively analysed using Jabref 2.9 reference manager.

3.2 Analyzing the Papers

Through careful reading of the title and abstract, we remained with 169 papers by
removing the redundant and unrelated papers. 37 papers (shown in the Annex) selected
using systematic sampling for examine the entire paper and for the remaining the title,
abstract and conclusion to conduct the classification and the summarization.

4 Conducing the Study

4. 1 Classification of the Software Refactoring Research Papers

Since 1999, researchers have studied software refactoring in various areas.
Classification and structuring the findings is important to benefit from these studies.
We analyzed all the 169 papers and classified into the following groups:
 Survey of software refactoring: review refactoring papers (2, 3, 4, 9, 11)1.
Software refactoring tools: papers written on refactoring tools (5, 10, 14, 20, 22).
 Bad smell and Refactoring: discusses bad smells and refactoring (6, 21, 24, 33).
 Software artifacts and Refactoring: study software artifacts such as database,

design document and refactoring (1, 34, 37).
 Agile development and Refactoring: investigates agile and refactoring (19, 29).

1 The reference numbers in the curly brace refer to Annex.

Copyright © 2014 SERSC 281

Advanced Science and Technology Letters
Vol.46 (Games and Graphics 2014)

- Design pattern and Refactoring: studies design pattern, micro pattern, anti-pattern
and refactoring and their association (43, 12, 27, 29, 30, 36).

- Test driven development and Refactoring: considers papers study test driven
development and refactoring (15, 26, 28, 31, 35).

- Software refactoring and System Evolution: study papers that talk about software
refactoring and system evolution (13, 23).

- Software metrics and Refactoring: studies software attributes and how they are
affected by software refactoring (8, 16, 17, 25, 32).

Table 1. The paper classification statistics.

No Digital Database No. of papers
1 Survey of software refactoring 10
2 Software refactoring tools 18
3 Bad smell and Refactoring 23
4 Software artifacts and Refactoring 14
5 Agile development and Refactoring 29
6 Design pattern and Refactoring 17
7 Test driven development and Refactoring 15
8 Software refactoring and system evolution 7
9 Software metrics and refactoring 21

Total 169

4.2 Finding of the Detailed Analysis Process

The following are the analysis process outputs of the 169 papers where refactoring
studies are contribute a significant amount of knowledge.

- Researchers effectively showed database and HTML document refactoring.
- Though it is not an exhaustive list, the driving forces of system refactoring are

identified: cost, profits, suppliers, information, technical or futures.

- Design pattern, micro pattern, anti-pattern, code smell and software refactoring
association and dependency are investigated to a certain level.

- Test driven development (TDD) and how and when to apply refactoring with unit
testing to make the TDD more effective and efficient.

- How formalisms help to guarantee program correctness and preservation.
- General and specific characteristics of the refactoring tools are provided.
- Identification of which refactoring to apply is dependent on the particular

application domain type e.g. Web based.

- How software external qualities affected after refactoring is studied theoretically &
empirically.

- Some researchers show how to use code complexity analysis to detect whether
classes need a refactoring or not.

- Studies indicate that unit testing is the commonly used efficient technique to
validate the preservation of the internal behavior after a refactoring.

- The difficulty of merging and integration is the main cause not to do refactoring.
- A better validation technique is more important than having best refactoring tool.

282 Copyright © 2014 SERSC

Advanced Science and Technology Letters
Vol.46 (Games and Graphics 2014)

5 Conclusion and Future Work

In software development activity, refactoring is highly desirable to assure the quality
of the software process and product. In this paper, we have classified and examined
169 software refactoring related research papers that are published over the past
fifteen years. The following are areas which need further investigation:

- How to do refactoring of testing artifacts; requirement and design model.
- How refactoring shall be used in small, medium and big project and/or company.
- Rectify the confusion with different researchers about refactoring and the external

or internal quality of software and how they are affected.

- Establishing guidelines are needed which contain and support system refactoring.
- How refactoring can fit well in the linear waterfall or incremental spiral models.
- Studying what fraction of code modification is refactoring need further

investigation.

- Identifying the most frequent refactoring to narrow down the refactoring option.
- Classifying refactoring method based on software quality attributes needs

theoretical and practical research.

- Determining which code smell is effective to indicating the need of refactoring.
- Currently there a tremendous interest to apply refactoring related concurrency,

parallelism, mobile platforms, web-based, cloud computing and GPU etc.

- How can we improve programmers experience in using refactoring tools?
- How can we improve programmers’ knowledge and skill of refactoring?
Finally, the above directions can be a candidate research area for the researchers and
practitioners to overcome the limitations of the software refactoring activities.

References

1. Coleman D. M., Ash D., Lowther B., Oman P. W.: Using metrics to evaluate software
system maintainability. IEEE Computer, vol. 27, no. 8, pp. 44-49 (1994).

2. Guimaraes T.: Managing application program maintenance expenditure. Comm. ACM,
vol. 26, no. 10, pp. 739-746 (1983).

3. Rugaber S.: Program comprehension. Encyclopedia of Computer Science and Technology,
vol. 35, no. 20, pp. 341-368 (1995).

4. Introduction to Refactoring, http://sourcemaking.com/refactoring/defining-refactoring.
5. Lehman M.: Laws of program evolution - rules and tools for programming management.

InProceedings Infotech State of the Art Conference, Why Software Projects Fail, vol. 11,
pp. 1–25 (1978).

6. Lehman M., Ramil J.: Rules and tools for software evolution planning and management.
Annals of Software Engineering, vol. 11, no. 1, pp. 15-44 (2001).

7. Opdyke W. F.: Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks. PhD thesis, University of Illinois at Urbana-Champaign, (1992).

8. Martin Fowler. Refactoring: Improving the Design of Existing Programs. Addison-Wesley,
(1999).

9. Murphy-Hill E.: Improving usability of refactoring tools. In OOPSLA ’06: Companion
to the 21st ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 746–747. ACM Press (2006).

Copyright © 2014 SERSC 283

Advanced Science and Technology Letters
Vol.46 (Games and Graphics 2014)

10. Elish K. O., Alshayeb M.: Investigating the Effect of Refactoring on Software Testing
Effort. IEEE Computer Society (2009).

11. Mens T.: A Survey of Software Refactoring. IEEE, vol. 30, no. 2, February (2004).
12. Elish K., Alshayeb M., Karim O.: A Classification of Refactoring Methods Based on

Software Quality Attributes. Arab J Sci Eng 36: 1253-1267, (2010).
13. Bois B. D., Van Gorp P., Amsel A., Van Eetvelde N., Stenten H., Demeye S.: A

Discussion of Refactoring in Research and Practice, (2006).

Annex

Table 2. List of papers selected for detailed analysis.

No Digital Database Author Year

1 Refactoring of a Database Ayeesha etal 2009

2 A Field Study of Refactoring Challenges and Benefits Miryung etal 2012

3 A Survey of Software Refactoring Tom Men al. 2004

4 A Survey of software testing in refactoring based software models Pandimurug 2011

5 An expert system for determining candidate software classes for Yasemin etal
refactoring

2008

6 Bad Smelling Concept in Software Refactoring Ganesh B. 2009

7 Design Patterns in Software Development MU Huaxin 2011

8 Empirical investigation of refactoring effect on software quality Mohammad 2009

9 Empirical Support for Two Refactoring Studies Using Commercial M. Gatrell, ,
C# Software

2011

10 Evaluating software refactoring tool support Erica Mealy 2006

11 Formal specification of extended refactoring guidelines Wafa Basit, 2012

12 From Software Architecture to Design Patterns Jing Wang, 2005

13 Identifying Refactoring Sequences for Improving Software Panita 2012
Maintainability

14 Improving Usability of Software Refactoring Tools Erica Mealy. 2007

15 Investigating the Effect of Refactoring on Software Testing Effort Karim O. 2009

16 Quantifying Quality of Software Design to Measure the Impact of Tushar S 2012
Refactoring

17 Refactoring – Does it improve software quality Konstantinos 2007

18 Refactoring : Emerging Trends and Open Problems Tom Mens 2003

19 Refactoring Practice: How it is and How it should be Supported Zhenchang 2006

20 Refactoring Tools: Fitness for Purpose Emerson 2008

21 Schedule of Bad Smell Detection and Resolution: A New Way to Hui Liu,
Save Effort

2012

22 Software refactoring at the package level using clustering techniques A. Alkhalid, 2010

23 Strengthening Refactoring: Towards Software Evolution with Sérgio Bryto 2009
Quantitative

24 Using Software Metrics to Select Refactoring for Long Panita 2011
Method

25 A Classification of Refactoring Methods Based on Software Quality Karim O. 2011
Attributes

284 Copyright © 2014 SERSC

Advanced Science and Technology Letters
Vol.46 (Games and Graphics 2014)

26 A test case refactoring approach for pattern-based software
development

Peng-Hua 2012

27 Anti-pattern Based Model Refactoring for Software Performance Davide 2012

28 Automated Acceptance Test Refactoring RodrickBorg 2011

29 A Role for Refactoring in Software Engineering? Tony Clear 2005

30 Drivers for Software Refactoring Decisions Mika V. 2006

31 Testing During Refactoring: Adding Aspects to Legacy Systems Panita 2006

32 Impact of Refactoring on Quality Code Evaluation Francesca 2011

33 Perspectives on Automated Correction of Bad Smells Javier Pérez 2009

34 Rank-based refactoring decision support: two studies Liming Zhao 2011

35 Refactoring with Unit Testing: A Match Made in Heaven? Frens 2012

36 The Impact of Refactoring to Patterns on Software Quality Attributes Mohammad 2011

37 UML model refactoring: a systematic literature review Mohammed 2013

