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Abstract

This paper proposes an unsupervised learning framework in which models of objects’
appearance classes are learned using their spatio and temporal information, from video.
These models are used to detect objects of different classes in the everyday scene. The
proposed technique combines appearance and motion features in a weighted combination
framework resulting in models of object classes. Thus, better detection results are
achieved compared to foreground based tracking and to those obtained in a supervised
way. Since the proposed technique is unsupervised, a good detection rate is achieved
without manual effort expended in data collection and labelling. Experimental results
confirm that the proposed framework offers a promising solution for detection in
unfamiliar scenes.
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1. Introduction

The human ability to observe the world and learn object categories is remarkable.
Objects such as cars, lorries, aeroplanes, and people are easily recognised and understood
by humans as categories that have their unique logical divisions. This is despite the
variances that are intrinsic to objects belonging to the respective categories. For example,
objects of the same category can often be quite different with respect to features such as
their appearance or behaviour. Even the same object may appear differently from different
viewpoints and in different configurations (e.g., postures). Furthermore, objects belonging
to different categories can be confusingly similar with respect to their appearance or
behaviour. One of the goals of computer vision is to reproduce this ability of humans to
learn object categories and detect objects, despite the challenges arising from intra- and
inter-class variances. Considerable research has been undertaken over the last few years to
model the systems by which a machine can see and learn from observations. A number of
fundamental problems have been addressed in this domain; for instance, object
segmentation [3, 4, 5], object detection [6, 7, 8] scene analysis [9] and activity recognition
[10, 11].

Training a machine to detect similar objects based on their appearance in a scene with
minimal human intervention is an important and challenging research area. To deal with
this challenge, various approaches for learning object classes have been proposed in the
last few years. These approaches use different kinds of features of objects, such as
appearance, motion, behaviour, affordance, and functionality for representing objects in a
computer. These features have been used to learn object classes and/or to categorise
objects in a fully supervised way [13, 15] or in a collaborative approach [14, 16] between
human and computers. In recent work [2] adopted a discriminative approach using
approximate hand annotations to learn a limb/non-limb classifier.

In comparison to the work on static images using an unsupervised learning approach [3,
5, 9, 18, 19] relatively less research has focused on learning from videos either for single
object class [17] or multiple
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(a) (b)

Figure 1. Foreground Detection of Close Moving Objects and mis Detection
of the Stationary Objects. (a) In Street Traffic Close by Moving Cars and the
Stationary Objects in the Scene, Indicated by Arrows. Close Moving Objects

are Detected as Single Foreground Object Regions. (b) Aim to Detect and
Track these Foreground Object Regions SEPARATELY and also to DETECT

STATIONARY OBJECTS in the SCEne, as INDICAted by ARROws

object classes [20]. Celik et al., [20] proposed the idea of simultaneously training multiple
detectors in an unsupervised way, using scene specific knowledge to guide the learning of
object classes. They predefined the number of object classes and chose good training
examples by using a predefined reference line in the image where the objects of interest
have limited appearances. This approach may not be well suited for more challenging
scenes. The framework proposed by Celik et al., [20] is close to the approach proposed
here. However, there are some significant differences which make our proposed approach
more general. Firstly, rather than using just appearance based features, we combine it with
motion and trajectory based features, since objects of the same class tend to have similar
appearance and motion. Moreover, we learn the optimal combination of these features for
any given scene in an unsupervised manner. This makes the system potentially more
robust as it doesn’t rely on appearance alone. The robustness of this combination has been
demonstrated experimentally in Section IV. The second significant difference is that we
not make any assumptions about the number or nature of the object categories in the scene,
except that the objects are in motion.

Figure 1(a) shows example of detection of close moving objects as a single object
(indicated by red arrows) by the tracker in [21]. This figure also shows the failure of
detecting the stationary objects indicated by other red arrows. We aim to keep tracking
such objects separately even when they are moving in close proximity. In addition, we
also aim to detect objects even when they are stationary. Figure 1(b) is an example
showing the separate detection of close moving objects and the detection of stationary
object indicated by arrows, which is the goal of the research presented in this work.

The main motivation of the proposed technique in this paper is to combine the
advantages of using foreground with that of trained object detectors, while minimising
their respective disadvantages. We do not rely on previously trained object detectors.
Instead, we use foreground extraction to obtain foreground blobs from a scene. We then
use properties of the moving objects such as their appearance, motion, and trajectory
features and learns appearance classes in an unsupervised way. In this manner, we
significantly minimise the need for collection and labelling of training data for a new
scene. We then train object detectors on these learned classes and proceed to detect
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unseen objects for the same scene. Thus, we harness the power of trained object detectors
with the information available from the foreground to create object detectors for a new
scene in an unsupervised way.

Figure 2. Flow of the System for Unsupervised Clustering of Foreground
Object Regions to Acquire Training Examples from Unlabeled Video

Sequences, where each Cluster Represents an Appearance Class. These
Clusters are used to Train Detectors for each Appearance Class

The paper is organised into five sections, including this section. Section 2 describes the
technique of unsupervised acquisition of training data to learn appearance classes. Section
3 describes the training of detectors used to detect objects in the observed scene. Section 4
describes the evaluation of the proposed framework. Finally, Section 5 concludes the paper
by highlighting the propositions and future directions of our research work.

2. Unsupervised Acquisition of Training Data

Foreground segmentation using background subtraction and filtering noisy object
regions from an input video is the first step of our system flow (Figure 2). From raw
video frames acquired from a static camera, we segment foreground object regions using
pixel-level background subtraction [21]. The collected foreground object regions are
represented by a bounding box. Once we segment the foreground object region, we track
it using the Nearest Neighbour Data Association algorithm [22], between consecutive
frames.

Let ( ) be the set of all object trajectories in an observed
scene and ‘ ’ be a trajectory composed of the sequence of foreground object regions
belonging to the same object, i.e.,
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( ) (1)

where ‘ ’ is the number of frames in which the object has appeared. Each foreground
object region ok describes the object’s attributes such as position, width and height, i.e.,

( ) (2)

where ( ) is the position (column, row address in image) and, and are the
width and height respectively of a foreground object region in the frame.

In outdoor scenes, the occurrence of noisy trajectories is not uncommon due to factors
such as camera noise, variation in illumination and limitations of the background model.
We automatically remove spurious that do not satisfy the following conditions:

|( ) ( )| (3)

|( ) ( )| (4)

(5)

where and are predefined threshold and is the minimum accepted

length of a trajectory.
Condition in Equation 3 ensures that there is no long displacement between frames.

Condition in Equation 4 limits the deformation in width and height of object regions
between frames. Condition in Equation 5 ensures only trajectories that persist over a given
number of frames are kept.

2.1. Feature Extraction

The next step is the feature extraction, as shown in Figure 2, which is used to encode the
objects. The object motion is computed in the form of ground speed and the
appearance is represented using aspect ratio and a Histogram of Gradient ( )
descriptor. Each of the individual features is then scaled by a given weight and
concatenated into a final feature vector. Let represent the displacement on the ground plane
[30] of a foreground object between successive frames. Then the displacement is estimated
as,

|( ) ( )| (6)

where ( ) are the coordinates on the ground plane corresponding to the centre base
position of the foreground object region which is assumed in contact with the ground. An
Homography mapping between the image plane and the ground plane is assumed knows.
We compute the aspect ratio of each foreground object region using the width and height
of the foreground object region. For a foreground object region 〈 〉 the
aspect ratio is defined as,

( 7 )

The descriptors for each foreground object region is computed in the observed
scene. The descriptors describe the object feature over the rectangular given patch or
region of object. Therefore, can be used to represent the rough shape [31] of the
object of interest. To compute the descriptors we adopt the Dalal and Triggs [23]



Copyright ⓒ 2014 SERSC 163

International Journal of u- and e- Service, Science and Technology

Vol.7, No.1 (2014)

method. For a foreground object region the collection of vectors is represented as
.

2.2. Combining Features

The combined feature vector is obtained by concatenating individual features for a
foreground object region which is represented as,

[ ] (8)

where the scalars ( ) such that and
. Finally, the matrix of combined feature vectors for all object regions are represented as,

( 9 )

where the subscript now varies over all object regions and trajectories, and T is the total
number of foreground object regions ( (∑ ) , omitting first object
region in each trajectory.

2.3. Clustering to obtain classes

Clustering is the next step after the acquisition of training data to obtain appearance
classes, Figure 2, we cluster the matrix of combined feature vectors . In order to keep the
classifier unsupervised we avoid using domain knowledge and do not fix the number of
clusters. We cluster objects of training data with a varying numbers of clusters. The
obtained set of clusters for input object set is represented as a partition of the T feature
vectors:

{ }, (10)

where and can be given as,

{ | } (11)

where B is the set of objects regions belong to a cluster . The clustering feature vector
provides class labels for each foreground object region of the training data.

2.4. Parameter Estimation

The number of clusters and the weights are unknown and must be estimated from the
training data in the matrix defined in Equation 9. We do this by maximizing an intrinsic
measure of goodness for a given clustering . To do this we use the Fisher’s ratio [24],
which measures the separability of clusters.

Let and be the means and and be the variances of combined features

defined in Equation 9 of the objects belonging to clusters and in respectively. The
Fisher ratio ( )) is defined as the ratio between the inter-class variance and the intra-
class variance, which is given as:

( ) ( ) (12)
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This definition is extended [24] to the case of multiple clusters, by taking the average
Fisher ratio between all pairs:

( ) | |(| | ) ∑ ∑ ( ) (13)

The average Fisher ratio alone is not enough to compare the separability between the
clusters where the number of clusters may vary. In order to compare clustering with
different number of clusters we use a Minimum Description Length MDL-like principle
[25] that scales the average Fisher ratio by a factor

| | that penalises larger numbers of clusters, where . We take the log of the
product to obtain:

( ) ( ( )) (| |) (14)

where ( ) is an MDL-like measure. Here, ( ( )) corresponds to data-term and
(| |) corresponds to size of the model.

Using the parameters ( ) defined above, Equation becomes

( ) ( ( )) (| | ) (15)

where ( ) is an MDL-like measure for each value of the parameters ( ) We
determine the optimal values of the parameters ( ) in two stages. First we determine
top ranking optimal weights . By top ranking optimal weights we mean the highest
ranking value of across the numbers of clusters. To define we first define for
each value of

{ ( )} (16)
( )

Then for any we define rank ( ) as the number of for which is maximum (that
is those for which ). Then we choose that which has the highest rank, called
top ranking .

( ) (17)
( )

Second having determined the optimal weights , we find the optimal number of
clusters .

( )
( ) { ( )} (18)

In order to validate our unsupervised approach, we also compute optimal parameters
with respect to category in ground truth, using the Rand Index [26]. These ground truth of
the dataset are obtained in a semi-supervised way.

3. Training and Using Multiple Detectors

We train a bank of detectors consisting of one detector for each appearance class. The
whole architecture of building a bank of detectors and using them to detect objects of
interest may be divided into two phases: the training phase and the detection phase. The
training phase creates a set of binary classifiers, one classifier for each appearance class.
The detection phase uses the learned classifier(s) to detect objects of interest (if present) at
multiple scale and positions in the frames of a test video.
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3.1. Training Phase

The first step of training a bank of detectors c.f Figure 3, is the creation of training
examples for each appearance class. We automatically select positive and negative
training examples for each object class from the set of clusters in addition to
background examples. The selection of positive examples for each class is simple. Each
cluster is selected as a set of positive examples. The corresponding negative training
examples include selected clusters from the training data plus background examples. We
include examples from other clusters in the set of negatives in order to reduce confusion
between classes.

We compute mean features of each object belonging to a cluster . if represents
the optimal feature value of the foreground objects belonging to cluster , then the mean

value of the features represented by ̅ is estimated as,

̅ | |∑ (19)

The norm Euclidean distance between the clusters ( ) is defined as,

( ) ii ̅ ̅ ii (20)

For a set of positive examples belonging to cluster , the set of clusters consisting
of negative training examples (other than the background examples), represented by ̂ , are
obtained as,

̂ such that ( ) (21)

.

Figure 3. Training Phase: Train a BAnk of DETectors, Consisting as many
Detectors as Number of CLusters, where each CLuster Corresponds to an

Appearance Class
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where is the threshold. We estimate this threshold as the mean of the minimum

and the maximum value in the matrix ( ). We believe that this simple heuristic is
also reasonable because the distance of set of positive examples belonging to a cluster is
likely to be less than mean value. This implies that the set of examples belonging to a
cluster for which the distance is greater than the mean value would most likely be negative
examples.

Finally, the set of training examples consisting of positive and negative training
examples to train a detector is define below. Let represent a set training examples for
an appearance class, then

{ ̂ } (22)

where and ̂ defined above, and is the set of background examples corresponding to the
cluster . The set of training examples for other appearance classes in the observed scene
are obtained in a similar way. Background examples are obtained from frames of the
training video which do not contain any moving foreground objects. Some small
supervision is involved in selecting background images that do not contain moving
objects.

3.2. Object Representation

Training examples of each class are required to represent a fixed size image window.
The same sized image window is used to detect objects of that class in test images or
video. We automatically compute the fixed size image region window separately for each
appearance class of the observed scene by using the mean width and height of the
foreground objects regions belonging to the cluster. The fixed size image window for
cluster corresponding to a class be represented by which is estimated as,

̅ 
̅ (23)

Figure 4. An Example of Computing a Same Aspect Ratio from a Negative
Training Example Corresponding to a Positive Training Example, Sample
Positive Training Examples (Visible Object Car) Belonging to a Class with

Image Window Size [57, 36] Pixels and the Corresponding Negative
Example with Actual Size Foreground Object Region Represented by Red

Bounding Box and the Determined Mean Aspect Ratio of the Positive
Examples (e.g, car) Represented by Green Bounding Box
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Where
̅

| | ∑ 

̅
| | ∑ 

̅
̅
̅

Each of the positive training examples belonging to the cluster and the corresponding
negative training examples are then re-scaled with respect to the fixed size image window
. If the negative training examples are only the background examples then re-scaling them
with respect to the fixed size image window is easy. However, when the

negative training examples are the chosen clusters ̂ defined in Equation 21
containing a variety of object instances with varying object sizes, then extracting them
with a fixed size image window, such that whole object instances enclosed in the image
window , requires care. To extract such same sized negative examples, we maintain the
aspect ratio of each negative example the same as the corresponding mean aspect ratio ̅ .
Then we re-scale them with respect to the fixed size image window . To achieve this, we
go back into the training images and pull out the negative training examples by enclosing
objects of interest within a box with the aspect ratio equal to ̅ . The aspect
ratio of a negative training example 〈 〉 where ̂ is estimated
as,

(24)

To maintain the same aspect ratio we use the conditions:

̅

̅

then

then

= ̅ 

̅

and

and

= ̅

= ̅

Figure 4 shows examples of visual results of the same aspect ratio of the negative
example corresponding to the positive example.

The next stage in learning a classifier is feature extraction from each training example.
The image feature extraction process maps image windows to a fixed size feature space
which encodes visual foreground object regions for the classifier. We extract image
features of each positive and negative (together with background) training example
belonging to the training set . We use dense and overlapping histogram of oriented
gradient HoG descriptors, proposed by Dalal and Triggs [23] to encode the visual objects
regions.

The final stage of the learning phase is the training of a classifier that forms the basis of
a detector, shown in Figure 3. We use a linear Support Vector Machine (SVM) as our
baseline binary classifier, which proved to be the most reliable and scalable of the
classifiers tested in our initial experiments. The extracted HoG features of each training
example belong to the set of training for the appearance class corresponding to the
cluster are fed into the linear SVM. From the learning process we train a bank of
SVM detectors, one detector for each appearance class. Each detector is trained for cluster

where each cluster corresponds to an appearance class.



Sequence: Street-traffic

Number of frames : 2799

Object class
Number of
instances

Cars 902

People 1109

Buses 224

Total objects
2235
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3.3. Detection Phase

Our detection framework builds on the HoG detector presented by Dalal & Triggs [23].
Each detector in the bank is applied to search for the object of interest in the test video.
The detectors scan the whole image (one detector at a time) at multi-scales with a
(separate) fixed size image region window. Each detector computes image features with
respect to the fixed size image window, and makes decisions of object/non-object for
which it searches, based on some predefined threshold.

We evaluate the performance of the bank of detectors compared to the ground-truths and
the foreground tracker.

4. Experiments and Evaluation

We evaluate the performance of our proposed method on a street traffic dataset,
containing multiple object categories. The Street-traffic [32] dataset includes several
classes of moving objects (people, cars, buses, and trucks). The statistics of dataset is
given in table I(A).

Table I. Statistics Street-traffic dataset: (a) Output from the foreground
tracker (b) Ground truth

Sequence: Street-traffic

Number of frames 28891
Duration 19 m 15s

Total number of
objects

11306 instances

Cars 5632 instances.
People 1672 instances.
Buses 926 instances.

Mix of other
objects

(people, cars,
busses)

3076 instances

To evaluate the performance of the trained detector we also collect ground truth from
test videos, which are used to verify the prediction of content in the test images. Table I(B)
summaries the ground truth for each object category in the training dataset.

Table II. Summary Clustering based on F-Ratio Measure. In the Table
Column one Represents the Varying Number of Clusters, each Cell in

Columns 2 Represent the Optimal F-Ratio Measure and the Corresponding
Optimal Weights

Summary for clustering evaluation using F-ratio
Street-traffic dataset

No of Clusters
Optimal F-Ratio

Optimal weights [ ]
0.328

2 [0.4 0.1 0.5]
0.413

3 [0.4 0.1 0.5]
4 0.375

[0.5 0.2 0.3]
6 0.345
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[0.4 0.2 0.4]
10 0.269

[0.4 0.2 0.4]
14 0.22

[0.4 0.1 0.5]

A. Baseline: Clustering Foreground Regions using HoG Features Only

In this experiment we report the results obtained by clustering foreground object regions
using HoG features only. This approach has been adopted by Celik et al. [20] and hence
forms a suitable baseline for the approach proposed here.

To evaluate the baseline approach, i.e. Celik’s approach, we fixed parameters of our
framework (same as the number of objects category in dataset), weights
[ ] (corresponds to the HoG feature in our framework) to form appearance classes by
clustering foreground regions using only HoG features.

The learned clusters are evaluated in two ways, (i) with respect to ground truth of
clusters using Rand index, (ii) with respect to performance on detection. These results
provide a baseline with which we compare our approach below.

The clustering results are tabulated in Table III. This table shows that the Rand index is
49.6% based on HoG descriptors. However, the Rand index is 64.5% based on our
proposed approach. This indicates the clustering performance using our proposed approach
is significantly higher than Celik’s approach. The detection performance of the SVM
detector trained on clusters (obtained using Celik’s approach) is shown in Figure 8(b). The
maximum precision and recall is shown 0.45 and 0.23 respectively which is comparatively
much less than the detection performance of a bank of detectors trained on the clusters
obtained using our proposed approach shown in Figure 8(a).

B. Finding Optimal Clusters and Corresponding Parameters

One of the central aspects of this paper is a framework in which foreground objects
could be clustered with different sets of parameters that correspond to (i) different
weighted feature combinations with weights ( ); (ii) different number of
clusters h. A technique for finding the optimal set of parameters in an unsupervised way
using an MDL-like approach (as given in equation 15) was described in section II-A. The
clusters corresponding to this set of parameters are used to train a bank of detectors. The
following describes the experimental results.

In order to find optimal weights , we find varying numbers of clusters =
2,3,4,6,8,10 and 14.Using Equation 16 the optimal value of for each number of cluster is
tabulated in Table II. Using these values find rank ( ) for all whenever ( ) is non zero. The
values ( ) are plotted against ,
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Figure 5. Rank of Weights ( ). The Highest Rank Corresponds to
= (0.4, 0.2, 0.4)

cf. Figure 5. Then using Equation 17 the optimal weight is obtained as (0.4, 0.2, 0.4).
Having determined , we now compute as those values of that gives maximum F-ratio
amongst all considered values of tabulated in Table II. Thus, corresponding to the largest
F-ratio measure 0.413 shown in the table, the optimal values of the parameters are:
weights ( ) = (0.4, 0.2, 0.4) and the number of clusters = 3.

It is intuitive that for a particular domain, certain features are more important than other
features for the task of discriminating between objects of different appearance classes. The
weights capture the relative importance of these different features. Globally optimal
weights are specific to the domain for which they are obtained. In a new domain, these
globally optimal weights may be different. We would like to find a fixed set of weights
that are likely to be effective across different numbers of clusters as appropriate for a new
domain. This is the motivation for choosing the most repeated weights (top ranked).
Another motivation arises due to the variability of clustering produced by k-means.
Choosing a globally consistent (most repeating) weights across different number of
clusters would help address this problem also.

C. Validation of Parameters using Ground Truth

In the following, we validate the parameters learned above in an unsupervised way, with
those learned by using the ground truth. We find optimal parameters w.r.t the category in
ground truth on a single dataset using Rand index. From the experimental results, shown in
Table III, the optimal values of parameters are computed using Rand index. Thus
corresponding to the optimal clustering the Rand index measure 64.5% at the
optimal values of the parameters: weights ( ) = (0.4, 0.2, 0.4) and the
number of clusters = 3. These set of parameters values are the same as those obtained
using our unsupervised framework. Thus they validate the optimal values obtained in an
unsupervised way. We notice that using the K-Means clustering algorithm the optimal
weights vary slightly. For this reason, ( ) = (0.5, 0.1, 0.4), (0.4, 0.1, 0.5), (0.3,
0.2, 0.5) can also be sets of good weights for combining the aspect ratio, ground speed and
HoG descriptor features respectively.

Training and Detection: Having learned an optimal clustering of foreground regions, we
regard them as learned appearance classes and use them for training appearance object
class detectors. We train a bank of detectors consisting one detector for each appearance
class, using a linear SVM classifier as they are regarded as fast and inherently robust to
outliers [28]. We extract HoG features [23] with fixed size feature vectors for the SVM
pattern recognition classifier. To detect object of interest, we apply each detector from the
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bank of detectors to search for the object of interest in each image of a test video. Each
image is scanned with a fixed size detection window at multiple scales for each detector in
a bank.

Table III. Optimal Clustering based on each Single Feature and the
Combined Features Set, Optimal Measures is the Rand Index

Summary for clustering = 3 clusters
Street-traffic dataset

Weights Feature set Optimal Rand index

[1, 0, 0] Aspect ratio 56.7

[0, 1, 0] Ground speed 52.9

[0, 0, 1] HoG descriptors 49.65

[0.4, 0.2, 0.4] Weighted combination 64.5

4.1. Evaluation of Bank of Detectors

The performance of each bank of detectors is evaluated by a separate precision-recall
curve. A predicted bounding box is considered correct (true positive) if it overlaps more
than 50% with a ground truth bounding box, based on Pascal VOC’09 criteria [27]
otherwise the detection bounding box is considered as false positive detection. We apply
each detector from the bank of detectors to search for the object of interest in each image
of test video. Each image is scanned with fixed detection window at multiple scales, as
many times as we have the number of detectors in a bank.

Qualitative evaluation: We first summarise the detection results in a qualitative manner.
Figures 6 and 7 show the detection performance of a bank of detectors consisting of one
detector for each appearance class, compared to the [21] foreground detector performance
and the ground truth. The detections found by the SVM detectors are shown with yellow
color bounding boxes, whereas the ground truth and foreground detections are shown by red
and green bounding boxes respectively. A qualitative inspection shows better performance
with our learned detection compared to the foreground detector, which is our baseline. One
advantage that arises naturally with the use of the learned detectors in comparison to the
foreground detector is that the stationary object instances are comprehensively detected by
the learned detector, whereas the foreground detector tends to miss objects when they are
stationary beyond certain duration. Another observation is that the learned detectors are
more capable of detecting closely moving objects.

Quantitative evaluation: The detection performance of the bank of detectors using our
proposed approach and our baseline approach, trained for the street traffic dataset is also
shown by precision recall curve in Figures 8(a) and 8(b) respectively. Figures 8(a)
indicates the maximum precision recall are 0.92 and 0.8 respectively for the bank of
detectors obtained using our proposed approach. However the maximum precision recall
are only 0.45 and 0.23 respectively for the detector obtained using our baseline approach
shown in Figures 8(a)

We also compare the detection performance of the bank of detectors obtained using our
proposed approach with the detections of foreground detector [21] used to collect
foreground objects. Figure 8(a) indicates the maximum precision recall are 0.29 and 0.072
respectively which is significantly low than the precision recall values of learned detectors
obtained using our proposed approach.
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Figure 6. Some Examples of Detections on the Street-traffic Test Images for
Final Detections of Instances. The First Column shows the Foreground

Detection, Second Column shows Ground Truth Bounding Boxes and the
Third Column Shows the Detections Found by the SVM Detectors of the

Bank. Column Three shows that the Trained SVM Detectors have a
Capability of Separately Detecting Close Moving Instances
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Figure 7. Some Examples of Detections on the Street-traffic Test Images for
Final Detections of Instances. The First Column shows the Foreground

Detection, Second Column shows Ground Truth Bounding Boxes and the
Third Column shows the Detections Found by the SVM Detectors of the

Bank. Column Three shows that the Trained SVM Detectors have a
Capability of Separately Detecting Close Moving Instances

Figure 8. (a) Recall-precision Curves showing the Detection Performance of
each Bank of SVM Detectors. SVM Detectors are trained on Positive

Examples versus Selected Negative Examples in Addition to the
Background Examples. (b) Recall-precision Curve Showing the Detection
Performance, the SVM Detector is trained on HoG based Clusters. This is

our Baseline Approach
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5. Conclusion

The proposed framework in this paper incorporates object features such as aspect ratio,
ground speed, and HoG descriptors. The experimental results show that a combined feature
set provides better clustering results, and in particular that performance is superior to the use
of HoG features alone. Thus we conclude that the learned detector significantly outperforms
the baseline approach (i.e. Celik’s approach) and the foreground detector. An important
conclusion is that the combined features - aspect ratio, ground speed and the HoG - provide
better clusters of the objects compared to the clusters obtained by using the
features individually. Moreover, the optimal weights ( ) = (0.4, 0.2, 0.4) show
that the features Aspect ratio and HoG descriptors, have similar significance, and are
more significant than the feature Ground speed. This is intuitively reasonable, since this
scene consists of several signals which tends to slow down the vehicles, thus lowering the
ground speed. This explains why HoG features and aspect ratio may be better suited to
form more distinct clusters. Figure 8(a) also shows that the bank of detectors trained for
the Street-traffic dataset has optimal performance for three detectors. Each detector in the
bank corresponds to an appearance class in the observed scene. The Street-traffic dataset
has three optimal appearance classes which validated the optimal number of clusters
obtained using F-ratio.

The proposed framework learns the appearance models for different object classes in
the observed scene, as we have shown for the Street-traffic dataset. This learning is
automatic and would take place for every new scene and indeed could be used to adapt
to long-term changes within a scene. However, our framework may not work for object
classification in a far field video [29], especially for small-sized object detection, for
which the proposed appearance features may not be computed due to inadequate
resolution.

Future work: The research work presented in this paper can be further expanded into
different interesting scenarios. For example, learning the parameters automatically for
noise filtering from the unlabelled data would facilitate the framework’s applicability.
Currently, in our approach, some supervision is involved. Further research can be pursued
to improve the clustering method, which can automatically split and merge clusters, in
order to obtain the optimal number of clusters for each dataset.
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