
updates. In our current implementation we perform batch

optimization. We need to rerun the EM algorithm if new

measurements are observed. Incremental implementation of

the framework is subject for future work.

C. Incremental Optimization

We introduce the theoretical basis for an incremental

implementation of the EM algorithm for the problem. As

suggested in [6], if the joint probability is fully factorized

with regards to the examples, as is in our case, we can use

the following algorithm for update in the E and M step while

preserving the correctness:

a) E step: In equation 7, if we have one new observa-

tion zK+1 at time K + 1, then

x∗

iK+1
, l∗jK+1

= argmax
xiK+1

,ljK+1

{
∑

i

||fi(xi−1,ui)− xi)||2Γi

+
K+1
∑

k=1

wjk ||vk(hk(xik , ljk)− zk)||2Σk

+

K+1
∑

k=1

||1− vk||2Ξk
}

(10)

and equation 10 can also be written in the form of 9, but

with less parameters. So, the incremental E step becomes

• Choose one observation term k to be updated, such as

k = K + 1
• Set x

(t)
ip

= x
(t−1)
ip

, l
(t)
jp

= l
(t−1)
jp

for p 6= k

• Set xik , ljk according to equation 7 in equation 9’s

form.

b) M step: The same step as introduced in section IV-

A, using the derivation in equation 6.

With this incremental EM algorithm, the E step can be

much faster since the optimization problem has less param-

eters. Also, after several iterations, we may use the model to

update the parameters by adding more observations, without

the need to run the EM algorithm on all the observations

again.

V. EXPERIMENTS

We implemented our method as discussed previously and

compared the result with various alternative approaches.

Our implementation is based on the graph optimization

framework g2o [5], and we programmed a plug-in type

library in C++ to represent our modified objective function

while reusing the Gauss-Newton optimization functionality.

The type library exposes properties of the edges including

the error metric, reweighted information matrix, and robust

Mahalanobis distance function.

A. Datasets

The first dataset is the commonly compared landmark-

based dataset Victoria Park released with iSAM [4]. We

apply different types of simulated corruption to the dataset to

generate multiple synthesized datasets to evaluate the effect

on different approaches. For the purpose of evaluating perfor-

mance against moving landmarks, several other commonly

used datasets are not suitable because they are pose-only

graphs without landmarks. The Victoria Park dataset of 2-

D odometry and landmark observations contains 6969 robot

poses, 6968 odometry measurements, 151 landmarks, and

3640 landmark measurements obtained.

The second dataset is based on a set of real world data

collected in crowded environment at the Alcazar of Seville

with a lot of tourists [10]. The original datasets provide

wheel odometry, stereo images, and laser scans. In the indoor

GPS denied environment, the provided ground truth map and

trajectory are built using a non-linear batch optimization-

based SLAM method with an approximate accuracy of 20

cm. We extract potentially moving landmarks from a indoor

subset of this dataset through a standard pipeline of feature

detection and extraction, feature correspondence, and stereo

estimation of keypoint depth implemented with OpenCV [2]

and ROS [9]. Due to lack of visual detection of loop closure,

we also add in a loop closure obtained from laser scans

instead of image data at the start-end point. This dataset tests

the typical scenario of visual SLAM with wheel odometry.

The extracted dataset consists of 4892 robot poses, 5808

measurements, and 13454 measurements.

B. Prior Methods with Moving Landmarks

In the first test, we evaluate the performance of the state-

of-the-art robust SLAM method, a implementation of Max-

Mixture [7], given dynamic landmark measurements. Max-

Mixture is a robust extension to classical graph SLAM

using Gaussian mixture in factor representation, that is,

xi =
∑

c φcN (µc,Σc) for component c and weight φc, with

observations being components, also similarly for zi. Max-

Mixture uses a max function to approximate and efficiently

evaluate the sum of Gaussians. It is well-known for its

capability of handling a large amount of incorrect loop

closures, but it is untested against moving landmarks, and

this experiment can be representative to other approaches in

the robust SLAM literature.

We apply different perturbations to all observations associ-

ated with a certain landmark which has the most observations

associated in the dataset, and study the different effects of the

perturbations on the optimal estimate of the trajectory and

the map of all landmarks obtained by Max-Mixture graph

SLAM. The Victoria Park dataset contains 2-D odometry and

landmark observations. As shown in Figure 3 the left plot

is the control group without perturbation, and is accurate to

the ground truth. A single southward bias is applied to all

observations of the landmark in the middle plot, simulating

sensory outliers. A temporally increasing bias is applied to

all observations of the landmark in the right plot, simulating

a southward moving landmark.

As the middle plot shows, Max-Mixture is still capable

of handling noise of large bias or spurious loop closures

introduced by simulated sensory fault. It correctly rejects

outlier landmark observations and recovers the position of

the perturbed landmark. However, it completely fails to


