
E(g,u,v, θ)=

T−1∑
t=1

{
Edata(gt,gt+1,ut,vt)+λa

2∑
k=1

(
Emrf(utk, θtk)+Emrf(vtk, θtk)

)
+λbEspace(gt)

+λcEtime(gt,gt+1,ut1,vt1)

}
+λbEspace(gT ) (8)

Combining these model potentials over a sequence of T
observed frames, we arrive at the overall energy function of
Eq. (8). For notational simplicity, we omit dependence on
the fixed input images. The energy function is proportional
to the negative log probability of the joint distribution of the
binary masks and flow fields P (g,u,v, θ | I).

3.2. Inference

We use a variational EM algorithm [9], maximizing the
posterior probability of the hidden flow fields while approxi-
mately marginalizing over possible layer support masks:

max
u,v,θ

logP (u,v, θ | I) = max
u,v,θ

log
∑
g

P (g,u,v, θ | I)

≥ max
u,v,θ

∑
g

Q(g) log
P (g,u,v, θ|I)

Q(g)
(9)

= min
u,v,θ

−H(Q) +
∑
g

Q(g)E(g,u,v, θ) (10)

Here, E(g,u,v, θ) = − logP (u,v, θ | I) up to some un-
known normalization constant. H(Q) is the entropy of the
variational distribution Q, which for algorithm efficiency is
constrained to be fully factorized over both space and time,
Q(g) =

∏
t

∏
pQ

p
t (g

p
t ). Given the flow field and marginal

approximations at all but one pixel, we can derive the mean
field update of Eq. (11) via standard methods [9]; see the
Supplemental Material for details. Alg. 1 summarizes an
inference algorithm based on a mean field message update
schedule. The following sections describe the schemes that
make this approach efficient and accurate.

Parallel Spatial Messages. Let l̄ = 1 − l. At each itera-
tion, a pixel receives messages from all the other pixels in
the frame, weighted according to Eq. (3) as

Q̃pt (l) =
∑
q 6=p

wpqQ
q
t (l̄) =

∑
q

wpqQ
q
t (l̄)−Q

p
t (l̄). (12)

This is a convolution with a Gaussian kernel in the space and
intensity dimensions [15, 23], so

∑
q w

p
qQ

q
t (l̄)

=
∑
q

ηG1(Ipt −I
q
t , p−q)Q

q
t (l̄)+(1−η)G2(p−q)Qqt (l̄)

=η
[
G1 ⊗Q(l̄)

]
(Ip, p) + (1− η)

[
G2 ⊗Q(l̄)

]
(p) (13)

This high-dimensional filtering can be efficiently imple-
mented via a permutohedral lattice [1].

Algorithm 1 Mean field for non-local layers
Compute Cptk=

[
ρD
(
Ipt − I

q
t+1

)
− λd

]
, (p, q) ∈ Etk

Initialize Qpt (l) ∝ exp{−Cpt,2−l}
while not converged do
Qprev ← Q
Adjust weight on temporal term λc as scheduled
Spatial message passing
Q̃pt (l)← λb

∑
q 6=p w

p
qQ

q
t (l̄)

Temporal message passing from next frame
Q̃pt (l)← Q̃pt (l) + λc

∑
(p,q)∈Et1 Q

q
t+1(l̄)

Q̃pt (1)← Q̃pt (1) +
∑

(p,q)∈Et1 C
p
t1Q

q
t+1(1)

Q̃pt (0)← Q̃pt (0) +
∑

(p,q)∈Et2 C
p
t2Q

q
t+1(0)

Temporal message passing from previous frame
Q̃pt (l)← Q̃pt (l) + λc

∑
(q,p)∈Et−1,1

Qqt−1(l̄)

Q̃pt (1)← Q̃pt (1) +
∑

(q,p)∈Et−1,1
Cqt−1,1Q

q
t−1(1)

Q̃pt (0)← Q̃pt (0) +
∑

(q,p)∈Et−1,2
Cqt−1,2Q

q
t−1(0)

Exp and normalize
Qpt (l)←

exp{−Q̃p
t (l)}

exp{−Q̃p
t (0)}+exp{−Q̃p

t (1)}
Damping
Q← µQ+ (1−µ)Qprev

Median filter Q when λc changes
end while

Temporal Messages. Temporal connectivity is more
sparse than the non-local spatial model. Each pixel p has
two temporal neighbors q at the next frame, determined by
the motion of the foreground and the background layers. Its
update depends on {Qqt+1 : q = p + (uptk, v

p
tk), k = 1, 2}.

As real motion is subpixel, we use bilinear interpolation to
compute these messages from the four nearest neighbors.
Because marginals are positive real numbers, this is straight-
forward with complexity linear in the frame size.

A pixel, p, may have several temporal neighbors, q, at
the previous frame, so that its update depends on marginals
{Qqt−1 : p = q + (uqt−1,k, v

q
t−1,k), k = 1, 2}. We locate

these neighbors by inverse warping of the flow field, and
complexity remains linear in the number of pixels.
Convergence and Local Optima. To implement spatial
message passing via high-dimensional filtering, we must
update the node marginals within a frame simultaneously and
in parallel [15]. While mean field methods are guaranteed
to converge when marginals are updated sequentially [9],
they may oscillate with parallel updates as demonstrated
in Figure 5. We suspect this is a greater problem for our
flow model, where likelihoods are more ambiguous than for


