
the recall does not drop below r− ρ for some small ρ. This
dictates an efficient algorithm for optimizing α: start with
bracketing α between 0 and some large number, and perfor-
m binary search. We use two subsets of images: Itrain is
used to learn w∗(α) in each iteration of the binary search
as per 1, while Itune is used to evaluate average recall ob-
tained with w∗(α) on images in Itune.

4. Cascaded Region Agglomeration

When the model is trained with the scaled loss (1), with
α optimized to limit recall drop on tuning set, the merging
usually stops early, with many remaining unmerged region-
s. This is in part due to the very “cautious” model learned
with the scaled loss, and in part to the fact that once many of
the regions in the initial segmentation are merged, and the
features of their surviving neighbors are updated, the distri-
bution of the features no longer matches the one on which
we trained Pg. Color and texture histograms tend to be-
come less sparse; shape may become less convex; features
that were useless for very small regions (e.g., counts of vi-
sual words) may become useful for larger regions, etc. This
observation leads to a simple idea: re-train the model on the
new, larger regions. The second model merges some more
segments, but then it also stops. We can then train a third
model, etc., as described below.

Algorithm 2: Cascaded Segmentation
Given: Image I , initialR,weights w1, . . . ,wT

R0 ← R
for t = 1 toT do Rt ← MERGE(I,Rt−1,wt)
Return:RT

Training the cascade (Algorithm 3) is similar to the train-
ing of cascaded classifiers elsewhere, e.g., in the Viola-
Jones face detector [23]. It is also similar in spirit to the
re-training of pixel merge likelihood in [11]. One important
difference from these is that we use asymmetric loss, rather
than tune the threshold on classification. This enables us to
train a deeper cascade, and helps performance as we show
in Section 5.

Algorithm 3: Training a cascade

Given: {Ii,Ri, Gi}Ni=1, ρ > 0, T
for t = 1 toT do

sample image subsets Itrain, Itune,
s.t. Itune ∩ Itrain = ∅

Find α∗t with binary search, using Itrain, Itune, ρ
wt ← w∗(α∗t ) by Eq. (1)
foreach i ∈ {1, . . . , N} do

merge Ri ← MERGE(Ii,Ri,wt)
Return: w1, . . . ,wT

At each stage of Algorithm 3, Itrain and Itune are mu-
tually exclusive, to prevent overfitting of α. Furthermore,
at each stage these two sets are sampled independently, so
that empirical distribution of features on with stage t is a
more robust estimate of the distribution of new data. Final-
ly, note that after a few stages most of the boundaries from
earlier stages are no longer active (due to merging of their
constituent regions) and so reusing the same images carries
much less risk of overfitting.

To summarize: ISCRA starts with an initial set of small
superpixels, and propagates them through a series of stages.
At each stage some of the regions are merged using the
model learned for that stage, and the next stage receives the
resulting coarsened segmentation as its input.

Once the merging stops, we can “backtrack” and report
the segmentation at any point along the merging process.
This allows us to control the scale either by specifying the
desired number of segments (appropriate for the superpixel
regime) or by specifying the number of stages to run, which
is the natural definition of scale for ISCRA. We can also
compute the boundary map that reflect the scale at which
regions are merged: if there are T stages in ISCRA, then for
every boundary pixel in the initial segmentation, the value
of the boundary map will be t/T if it was merged after t
stages. Pixels that were not on the boundaries of initial su-
perpixels will have values zero, and pixels that survived the
last stage will have value 1. Examples of ISCRA segmenta-
tions at multiple scales, as well as the hierarchical boundary
map, are illustrated in Figure 2(right); more examples are
available in supplementary materials.

5. Experiments

Our experiments were aimed at two goals: (i) compare
ISCRA to other methods in both superpixel and large region
regimes; (ii) evaluate effect of various design choices on
performance. Below we describe a few remaining imple-
mentation details, the experimental setup and the results.

5.1. Features and training

The features we use can be grouped into three sets:

Appearance features that measure difference in the
“content” of the two regions. These include
• Color: The χ2 difference of color histograms, com-

puted for each channel in L*a*b color space, with 32
bins per channel. This yields 3 dimensions in φ.
• Texture: The χ2 difference of two segments when rep-

resenting each image using 32 textons (1 dimension).
• Geometric Context: For each of seven geometric con-

text labels [10], compute χ2 difference between his-
tograms of values for that label within the regions, with
32 bins (7 dimensions).


