Appendix A. A formal characterization of marginal invariance

In this section, we formally characterize the class of distance dependent CRPs that are marginally invariant. This family is a very small subset of the entire set of distance dependent CRPs, containing only the traditional CRP and variants constructed from independent copies of it. This characterization is used in Section 4 to contrast the distance dependent CRP with random-measure models.

Throughout this section, we assume that the decay function satisfies a relaxed version of the triangle inequality, which uses the notation $\bar{d}_{ij} = \min(d_{ij}, d_{ji})$. We assume: if $\bar{d}_{ij} = 0$ and $\bar{d}_{jk} = 0$ then $\bar{d}_{ik} = 0$; and if $\bar{d}_{ij} < \infty$ and $\bar{d}_{jk} < \infty$ then $\bar{d}_{ik} < \infty$.

A.1 Sequential Distances

We first consider sequential distances. We begin with the following proposition, which shows that a very restricted class of distance dependent CRPs may also be constructed by collections of independent CRPs.

Proposition 1 Fix a set of sequential distances between each of n customers, a real number a > 0, and a set $A \in \{\emptyset, \{0\}, \mathbb{R}\}$. Then there is a (non-random) partition B_1, \ldots, B_K of $\{1, \ldots, n\}$ for which two distinct customers i and j are in the same set B_k iff $\bar{d}_{ij} \in A$. For each $k = 1, \ldots, K$, let there be an independent CRP with concentration parameter α/a , and let customers within B_k be clustered among themselves according to this CRP.

Then, the probability distribution on clusters induced by this construction is identical to the distance dependent CRP with decay function $f(d) = a1[d \in A]$. Furthermore, this probability distribution is marginally invariant.

Proof We begin by constructing a partition B_1, \ldots, B_K with the stated property. Let $J(i) = \min\{j : j = i \text{ or } \bar{d}_{ij} \in A\}$, and let $\mathcal{J} = \{J(i) : i = 1, \ldots, n\}$ be the set of unique values taken by J. Each customer i will be placed in the set containing customer J(i). Assign to each value $j \in \mathcal{J}$ a unique integer k(j) between 1 and $|\mathcal{J}|$. For each $j \in \mathcal{J}$, let $B_{k(j)} = \{i : J(i) = j\} = \{i : i = j \text{ or } \bar{d}_{ij} \in A\}$. Each customer i is in exactly one set, $B_{k(J(i))}$, and so $B_1, \ldots, B_{|\mathcal{J}|}$ is a partition of $\{1, \ldots, n\}$.

To show that $i \neq i'$ are both in B_k iff $\bar{d}_{ii'} \in A$, we consider two possibilties. If $A = \emptyset$, then J(i) = i and each B_k contains only a single point. If $A = \{0\}$ or $A = \mathbb{R}$, then it follows from the relaxed triangle inequality assumed at the beginning of Appendix A.

With this partition B_1, \ldots, B_K , the probability of linkage under the distance dependent CRP with decay function $f(d) = a1[d \in A]$ may be written

$$p(c_i = j) \propto \begin{cases} \alpha & \text{if } i = j, \\ a & \text{if } j < i \text{ and } j \in B_{k(i)}, \\ 0 & \text{if } j > i \text{ or } j \notin B_{k(i)}. \end{cases}$$

By noting that linkages between customers from different sets B_k occur with probability 0, we see that this is the same probability distribution produced by taking K independent distance dependent