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table belong to the same cluster. Since the number of occupied tables is random, this provides a
flexible model in which the number of clusters is determined by the data.

The customers of a CRP are exchangeable—under any permutation of their ordering, the probability
of a particular configuration is the same—and this property is essential to connect the CRP mixture
to the DP mixture. The reason is as follows. The Dirichlet process is a distribution over distributions,
and the DP mixture assumes that the random parameters governing the observations are drawn from
a distribution drawn from a Dirichlet process. The observations are conditionally independent given
the random distribution, and thus they must be marginally exchangeable.1 If the CRP mixture did
not yield an exchangeable distribution, it could not be equivalent to a DP mixture.

Exchangeability is a reasonable assumption in some clustering applications, but in many it is not.
Consider data ordered in time, such as a time-stamped collection of news articles. In this setting,
each article should tend to cluster with other articles that are nearby in time. Or, consider spatial data,
such as pixels in an image or measurements at geographic locations. Here again, each datum should
tend to cluster with other data that are nearby in space. While the traditional CRP mixture provides a
flexible prior over partitions of the data, it cannot accommodate such non-exchangeability.

In this paper, we develop the distance dependent Chinese restaurant process, a new CRP in which
the random seating assignment of the customers depends on the distances between them.2 These
distances can be based on time, space, or other characteristics. Distance dependent CRPs can recover
a number of existing dependent distributions (Ahmed and Xing, 2008; Zhu et al., 2005). They can
also be arranged to recover the traditional CRP distribution. The distance dependent CRP expands
the palette of infinite clustering models, allowing for many useful non-exchangeable distributions as
priors on partitions.3

The key to the distance dependent CRP is that it represents the partition with customer assignments,
rather than table assignments. While the traditional CRP connects customers to tables, the distance
dependent CRP connects customers to other customers. The partition of the data, i.e., the table
assignment representation, arises from these customer connections. When used in a Bayesian model,
the customer assignment representation allows for a straightforward Gibbs sampling algorithm for
approximate posterior inference (see Section 3). This provides a new tool for flexible clustering of
non-exchangeable data, such as time-series or spatial data, as well as a new algorithm for inference
with traditional CRP mixtures.

Related work. Several other non-exchangeable priors on partitions have appeared in recent research
literature. Some can be formulated as distance dependent CRPs, while others represent a different
class of models. The most similar to the distance dependent CRP is the probability distribution
on partitions presented in Dahl (2008). Like the distance dependent CRP, this distribution may be

1. That these parameters will exhibit a clustering structure is due to the discreteness of distributions drawn from a
Dirichlet process (Ferguson, 1973; Antoniak, 1974; Blackwell, 1973).

2. This is an expanded version of our shorter conference paper on this subject (Blei and Frazier, 2010). This version
contains new perspectives on inference and new results.

3. We avoid calling these clustering models “Bayesian nonparametric” (BNP) because they cannot necessarily be cast as
a mixture model originating from a random measure, such as the DP mixture model. The DP mixture is BNP because
it includes a prior over the infinite space of probability densities, and the CRP mixture is only BNP in its connection
to the DP mixture. That said, most applications of this machinery are based around letting the data determine their
number of clusters. The fact that it actually places a distribution on the infinite-dimensional space of probability
measures is usually not exploited.
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