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Abstract. The students of the Industrial Design department at the TU
Eindhoven are allowed to design part of their curriculum by selecting
courses from a huge course pool. They do this by handing in ordered pref-
erence lists with their favorite courses for the forthcoming time period.
Based on these informations (and on many other constraints), the depart-
ment then assigns courses to students. Until recently, the assignment was
computed by human schedulers who used a quite straightforward greedy
approach. In 2005, however, the number of students increased substan-
tially, and as a consequence the greedy approach did not yield acceptable
results anymore.
This paper discusses the solution of this real-world timetabling problem:
We present a complete mathematical formulation of it, and we explain all
the constraints resulting from the situation in Eindhoven. We present an
elegant integer linear programming model for this problem that easily can
be put into CPLEX. Finally, we report on our computational experiments
and results around the Eindhoven real-world data.

Keywords: University timetabling; network flow formulation; NP-
completeness; integer programming formulation.

1 Introduction

In February 2005, outraged students of the Industrial Design department were
protesting at the TU Eindhoven (The Netherlands). Uproar and revolt were in
the air. What had happened? Here is the story. The academic year of these
roughly 350 students of Industrial Design is split into a number of periods. In
every period, every student must do a number of small courses. There is a pool
of roughly 55 courses to choose from, and every student submits an ordered
preference list with his/her 10 favorite courses to the department. Based on all
the ordered preference lists, a scheduler at the department then assigns roughly
4 courses to every student. Until recently, the scheduler was a human decision-
maker who essentially applied a hand-woven greedy assignment procedure.

In February 2005, the students were absolutely dissatisfied with the work of
the human scheduler: Many of them did not get the courses which they would
have liked to get. Many of them were assigned to courses which they really did
not want to do. And more than 150 out of the 350 students received courses that
were not listed on their preference list!
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The department of Industrial Design realized that they had a problem. They
also realized that they did not know how to settle this problem. The number of
students had increased substantially, and the timetabling problem had become
much larger, much harder, and much more complex. Hence, the department
contacted the local experts on the campus: Us. They were hoping to find a
somewhat better assignment through computer programs. They explained their
problem to us (in a certain problem formulation No. 1), and we happily told
them that we are able to solve it: The problem (in formulation No. 1) could
be modeled as a network flow problem, and hence is solvable in polynomial
time. Unfortunately, it turned out that formulation No. 1 was not a complete
formulation of the problem: They had forgotten to inform us about a number of
additional restrictions that lead to a new, more difficult assignment problem (in
formulation No. 2), which eventually turned out to be NP-hard.

This paper is a report on the course assignment problem of the Industrial
Design department: We will describe the assignment problem in its (incomplete)
formulation No. 1 and in its (complete) formulation No. 2. We show that formu-
lation No. 1 yields a tractable problem, whereas formulation No. 2 yields an in-
tractable problem. Our main contribution is a careful case study of the complete
problem formulation. We design an elegant integer linear programming model
for it, with roughly 9000 variables and roughly 7000 constraints. Putting this
ILP model into CPLEX yields excellent results within moderate computation
times. We describe the ILP model in detail, and we report on our computational
experiments with the real-world data of the Industrial Design department.

Structure of the paper. The rest of the paper is structured in the following way. In
Section 2 we give a literature review of university and school time tabling. Section
3 contains a detailed description of the problem we solved for the department of
Industrial Design. The problem is formulated as an integer linear program which
will be described in Section 4. Section 5 contains the computational results. Some
conclusions are given in Section 6.

2 Literature Review

The literature contains a large number of variants of the timetabling problem.
These variants differ from each other by the type of institution involved (univer-
sity or high school) and by the type of constraints. The annotated bibliography
of timetable construction by Schmidt & Ströhlein [12] lists many papers that
appeared before 1980. Schaerf [11] gives a survey of the various formulations of
timetabling problems and classifies the timetabling problem into the following
three main classes:

School timetabling: The weekly scheduling of all the classes of a high school.
Avoid that teachers meet two classes at the same time, and avoid that classes
meet two teachers at the same time.

Examination timetabling: The scheduling of the exams of several university
courses. Avoid that exams of courses with common students overlap. Spread
out the exams for every student as much as possible over time.
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Course timetabling: The weekly scheduling for all the lectures of several uni-
versity courses. Minimize the overlaps of lectures of courses with common
students.

Of course this classification is crude, and there are many real-world timetabling
problems that fall in between two of these classes.

The basic school timetabling problem is also known as the class-teacher
model. The simplest problem consists in assigning lectures to periods in such
a way that no teacher or class is involved in more than one lecture at a time.
Even, Itai & Shamir [5] proved that there always exists a solution of this simplest
version of the school timetabling problem, unless a teacher or class is involved
in more lectures than there are time slots. Alternative formulations of the school
timetabling problem with more constraints can be found for example in Even,
Itai & Shamir [5], Garey & Johnson [7] and de Werra [4].

The main differences between course timetabling and examination time-
tabling are that examination timetabling has only one exam for each course,
that the time conflict condition is strict, and that several exams can be done
simultaneously in one room. Examples for additional soft constraints are: Stu-
dents can do at most one exam per day, and students may not have too many
consecutive exams. Schaerf [11] gives an integer linear programming formulation
of the examination timetabling problem and describes some alternative variants
of the problem.

The course timetabling problem consists in scheduling a set of lectures for
each course within a given number of rooms and time period. The main difference
from the school timetabling problem is that university courses can have common
students, whereas school classes are disjoint sets of students. De Werra [4] gives
a binary integer programming formulation. Schaerf [11] discusses some of the
most common variants of the basic formulation.

One variant is called the grouping subproblem or student scheduling problem.
If the number of students is too large for one room, courses are split into groups
of students and there are conditions on the minimum and maximum number
of students that can be assigned to each group. A student is required to take a
certain number of courses, which they have to select themselves after a timetable
is made available. The problem consists of assigning a student to a specific group
of a course for a given fixed timetable such that students are satisfied and there
are no time conflicts, see Busam [2], Feldman & Golumbic [6] and Laporte &
Desrochers [8].

Cheng, Kruk & Lipman [3] discuss the Student Scheduling Problem (SSP) as
it generally applies to high schools in North America. They define the problem
as the assignation of courses and a specific section to each student. The objective
is to fulfil student requests, providing a conflict-free schedule. They show that
the problem is NP-hard and discuss various multi-commodity flow formulations
with fractional capacities and integral gains. The main difference between the
SSP and our timetabling problem is that for the SSP all courses on the preference
list of the students have to be assigned to students. This results in most practical
cases into an empty feasible solution set.
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Laporte & Desrochers [8] give a mathematical formulation of the student
scheduling problem. They formulate the problem as an optimization problem
splitting the requirements into hard and soft ones. The only hard constraint in
their model is that student course selections must be respected. Time conflicts
for students are soft constraints. When time conflicts occur students are advised
to make a different course selection. The problem is then solved in three phases:
In the first one the algorithm searches for an admissible solution, in the second
section enrollments are balanced and in the third the room capacities have to
be respected. Tripathy [13] formulated the student scheduling problem as an
integer linear programming problem and uses Lagrangian Relaxation to solve it.
Sabin & Winter [10] use a greedy approach that is moderated by an intelligent
ordering of the students. Miyaji, Ohno & Mine [9] apply goal programming.

3 Problem Description

At our first meeting, the Industrial Design department explained the problem
to us in a certain problem formulation No. 1; see Subsection 3.1. This problem
can be modeled as a network flow problem, and hence is solvable in polynomial
time; see Ahuja, Magnanti & Orlin [1].

Unfortunately, we learnt after some time that formulation No. 1 was not
a complete formulation of the problem. They actually had forgotten to tell us
about a number of additional restrictions that lead us to a new, more difficult as-
signment problem formulation No. 2. Subsection 3.2 describes formulation No. 2.

3.1 Problem Formulation No. 1

At the first meeting with the Industrial Design department, they told us that
every student hands in a preference list of at most 10 courses and requests a
certain number of courses. The only constraints are that a student can not do
two courses at the same time and there is a maximum number of students that
can be assigned to a course. This subsection contains a more detailed description
of problem formulation No. 1.

A set C of courses and for each course c an upper bound Cmax
c on the number

of students is given. This number depends on the preference of the teacher and
the room capacity in which the course is given. For each course also the weekly
meeting time is already assigned. This weekly meeting time always consists of
two consecutive hours. Two such consecutive hours are defined as one time slot.
The weekly meeting time of a course is chosen from a set T of disjoint time slots.
T (c) is defined as the time slot which is the weekly meeting time of course c.
Hence, one of the constraints in the model is that courses ci and cj can not be
assigned to one student if T (ci) = T (cj).

We define S as the set of students. For each student s the requested number
rs of courses is given. Ps is defined as the set of positions on the preference
list for which student s filled in a course. Most students have Ps = {1, . . . , 10}.
There are also students that hand in a smaller preference list. For instance, a
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student almost finishing his bachelor and only one course left to do, which has
to be a math course, hands in a preference list with only math courses. For a
student s with only six courses on its preference list we have Ps = {1, . . . , 6}.
Table 1 gives a few examples of preference lists. Column Pi gives the encoded
course name of the course on position i of the preference list. The parameter csp

is introduced and is equal to c if course c is on position p of the preference list
of student s.

Table 1. Example of preference lists

Student rs P1 P2 P3 . . . P10

s040202 4 DAC03 DA247 DA125 . . . DA405
s040203 4 DA619 DA125 DA201 . . . DA616
s040204 4 DA418 DA242 DA402 . . . DA621

In summary: The input of problem formulation No. 1 consists of:

– a set T of time slots.
– a set C of courses; for every course c ∈ C a time slot T (c) and a maximum

number Cmax
c of participating students is given.

– a set S of students; for every student s ∈ S a set Ps of filled positions of the
preference list, a course csp for each position p ∈ Ps and a requested number
rs of courses is given.

The goal is to assign as many courses to students as possible, while:

– the number of courses assigned to student s does not exceed the requested
number rs.

– courses assigned to a student are on its preference list.
– courses assigned to a student do not conflict in time.
– no course exceeds its maximum number of assigned students.

This problem can be modeled as a network flow problem. A description of this
network flow model is given in Appendix A.

3.2 Problem Formulation No. 2

As we received the first data set from the Industrial Design department, we were
very surprised: there suddenly were also lower bounds Cmin

c on the number of
students participating in course c. This yields the new constraint that a course
either will not be given at all, or otherwise has at least Cmin

c participating
students. This new constraint can not be modeled as a flow-constraint, and
hence the maximum flow model in Appendix A becomes obsolete. In fact, the
new constraint makes the problem NP-hard; see Appendix B. After looking
at the data more carefully and after conversations with the Industrial Design
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department we noticed there were a lot more restrictions. The remainder of this
subsection explains these extra restrictions and defines the problem into more
detail.

An academic year is divided into a certain number of periods. The length of
such a period depends on the number of periods in which the academic year is
split. For instance, the academic year 2005-2006 is divided into six periods of
five weeks. We define such a period as a block. The Industrial Design department
wants us to schedule two blocks simultaneously. Therefore, set B is introduced
as the set of blocks that have to be scheduled simultaneously.

In problem formulation No. 1 we assumed the workload of all courses was
equal. However, there are courses with a workload of 40 hours and courses with
a workload of 80 hours. This can not be modeled with a flow constraint. In the
remainder of this paper a workload of 1 corresponds with a workload of 40 hours.
In Appendix B we prove that having courses with a workload 1 and courses with
a workload 2 makes the problem already NP-hard. For each course c ∈ C and
block b ∈ B the parameter w(c, b) is defined as the workload of course c in block
b. Hence for a course c with a workload of 80 hours in block b we have w(c, b) = 2.

In problem formulation No. 1, rs was defined as the requested number of
courses of student s. This definition is adjusted in problem formulation No. 2
into the requested workload of student s for |B| blocks together. For every stu-
dent s, a maximum requested workload rsb for each block b ∈ B separately is
given, because the requested workload of a student is not always equally divided
over all blocks b ∈ B. For instance, if blocks b1 and b2 have to be scheduled
simultaneously and rs = 3, then parameters rsb1 and rsb2 are both equal to 2. In
this case the model is allowed to choose the block in which student s is assigned
two courses. Another example, if student s has to do a practical training in block
b2 he has: rs = 2, rsb1 = 2 and rsb2 = 0.

It was assumed in problem formulation No. 1 that a course has one meeting
every week, hence it has one time slot. But there are also courses which have
two weekly meetings, hence have two time slots. If such a course is assigned to a
student, the student has to be available at both time slots. If courses with two
time slots are introduced into problem formulation No. 1, the problem can not
be modeled as a network flow problem.

The set C of courses offered to the students contains courses with multiple
sections, meaning that the course is repeated during the week. Table 2 contains
course DA242 as an example. The time slots in the table are encoded. For ex-
ample, code B1TM2 stands for the second part of Tuesday morning in block 1.
The workloads of a course in block 1 and 2 are denoted with wlb1 and wlb2. The
course DA242 has five sections which all have two time slots as meeting times.
The first meeting is for all sections on the same time slot and the other is on
a different time slot for each section. The first meeting is a class in one large
lecture room and the second is a meeting where exercises have to be made in
smaller groups.

We define I as the set of sections offered to the students. For every section
i ∈ I its course c(i) ∈ C is given. In problem formulation No. 2 there are
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no maximum and minimum number of students for a course like in problem
formulation No. 1, but a minimum number Cmin

i and a maximum number Cmax
i

of students for each section i ∈ I. The meeting times for each section i ∈ I are
given as the set of time slots T (i) ⊆ T . There are a few courses, for example
literature studies, which are not assigned to a time slot and thus T (i) = ∅.

Table 2. Examples of courses

Course Section Time slots of meetings wlb1 wlb2 Min Max

DA242 DAG242-1 B1TM2, B1TA1 1 0 0 30
DAG242-2 B1TM2, B1TA2 1 0 0 30
DAG242-3 B1TM2, B1WA1 1 0 0 30
DAG242-4 B1TM2, B1WA1 1 0 0 30
DAG242-5 B1TM2, B1WA2 1 0 0 30

DA247 DAG247-1 B1WA2, B2WA2 1 1 5 15
DAG247-2 B1WA2, B2WA2 1 1 5 15

Another constraint arises if students have specific needs, for instance when
they almost finish their studies and only have one course left to pass. Then a
course on the preference list of the student can be set to urgent. As long as the
maximum number of students (all with an urgency) is not assigned to this course,
the course has to be assigned to the student. A course which is urgent for one
student has to be given. In this case, it doesn’t matter whether the minimum
number of students is reached or not. We define U as the set containing all
combinations (s, p) for which course csp is urgent for student s.

A few courses have meeting times which are spread over two blocks. See
for example course DA247 in Table 2. This course has two sections and a total
workload of two which is equally spread over the two blocks. If a student is
assigned to a section of this course in one block he needs to be assigned to the
same section of this course in the next block. Hence, it is also possible that courses
are given in two blocks which are not scheduled simultaneously. If this occurs,
this implies there are students already preassigned to sections if the schedule of
the second block is made. Therefore, we introduce the set F of fixations which
contains combinations (s, p, i) for which section i of course csp is already assigned
to student s.

In summary: the input of problem formulation No. 2 consists of:

– a set B of blocks that have to be scheduled simultaneously.

– a set T of time slots.

– a set C of courses; for every course c its workload w(c, b) for each block b is
given.

– a set S of students; for every student s a total requested workload rs, a
requested workload rsb for each block separately, a set Ps of filled positions
on the preference list and for each position p ∈ Ps a course csp is given.

Timetabling Problems at the TU Eindhoven 147



– a set I of sections; for every section i its course c(i), a minimum Cmin
i and

maximum Cmax
i number of students and a set of time slots T (i) ⊆ T is given.

– a set U of combinations (s, p) for which course csp is urgent for student s.
– a set F of combinations (s, p, i) for which section i of course csp is already

preassigned to student s.

Our main goal is to assign workload to students as much as possible, while:

– maintaining the number of students in a section below a maximum size
prescribed.

– the total workload assigned to student s is less than or equal to rs.
– the workload assigned to student s in block b is less than or equal to rsb.
– sections assigned to a student do not conflict in time.
– students are only assigned to a section of a course on their preference list.
– students are only assigned to one section of a course.
– student s is assigned to section i if (s, p, i) ∈ F .

Soft constraints are for example spreading students over sections, a section needs
to be assigned to at least a certain minimum number of students and student s
has to be assigned to course csp if (s, p) ∈ U .

4 The Integer Linear Programming Model

To build a schedule which best fits the needs for the students, the problem is split
into four subproblems which are formulated as an integer linear programming
problem. These subproblems are solved sequentially, keeping the objective value
of the foregoing subproblems the same. The goals of the four subproblems are:

1. Maximize the number of assigned courses with an urgency.
2. Minimize the shortage of students to reach the minimum number of students

of a section. Because of urgencies, some sections must be taught, but don’t
have enough students with this course on their preference list. We assign as
many students as possible to those sections.

3. Maximize the total assigned workload. We try to assign a workload rs to
every student s.

4. ’Optimize’ the timetable. For example by assigning courses to students which
rank high on their preference list.

All parameters are already introduced in Section 3. Left to define are the
decision variables. These are defined as follows:

xsp :=

{
1 if course csp is assigned to student s
0 otherwise

yi :=

{
1 if section i is assigned to one or more students
0 otherwise

zspi :=

{
1 if section i of course csp is assigned to student s
0 otherwise
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The following constraints have to be fulfilled in all four subproblems:

xsp =
∑

i∈I|csp=c(i) zspi ∀s ∈ S, ∀p ∈ Ps (1)
∑

p∈Ps

∑
i∈I|csp=c(i) w(csp, b)zspi ≤ rsb ∀s ∈ S, ∀b ∈ B (2)

∑
p∈Ps

∑
i∈I|csp=c(i)

∑
b∈B w(csp, b)zspi ≤ rs ∀s ∈ S (3)

∑
s∈S

∑
p∈Ps,csp=c(i) zspi ≤ Cmax

i yi ∀i ∈ I (4)
∑

p∈Ps

∑
i∈I|csp=c(i),t∈T (i) zspi ≤ 1 ∀s ∈ S, ∀t ∈ T (5)

zspi = 1 ∀s ∈ S, ∀p ∈ Ps,

∀i ∈ I|(s, p, i) ∈ F (6)

xsp ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps (7)

yi ∈ {0, 1} ∀i ∈ I (8)

zspi ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps, ∀i ∈ I (9)

Constraint (1) takes care that at most one section of a course is assigned to
a student. The workload assigned to a student has to be less than or equal to
the requested workload each block separately and all blocks together. This is
fulfilled by constraints (2) and (3). Constraint (4) enforces that the maximum
number of students for a section is not exceeded and constraint (5) takes care
that at each time slot only one section is assigned to each student. If (s, p, i) ∈ F
then section i of course csp has to be assigned to student s, which is fulfilled by
constraint (6).

As explained above, the problem is split into four subproblems which are
solved sequentially. The goal of the first subproblem is to maximize the number
of assigned courses with an urgency. The constraint that a section needs to have
more than a minimum number of students is not a restriction in this subproblem,
because at least one section of a course must be given if there is a student with
an urgency for this course. This first subproblem can be solved with the following
ILP formulation:

Umax = max
∑

(s,p)∈U xsp

(x,y,z) satisfy (1)-(9)

The next step is to minimize the shortage of students to reach the mini-
mum number of students of a section, keeping the maximum number of assigned
courses with an urgency equal to Umax. There are sections that have to be given
because they are assigned to students with an urgency for the corresponding
course. Those sections are assigned to other students such that the minimum
number of students for those sections is reached. The decision variable si is de-
fined as the shortage of students for section i, i.e. the minimum number Cmin

i

of students subtracted with the number of students assigned to section i. The
second subproblem minimizes the total shortage Smin of students. This results
into the following ILP formulation:

Smin = min
∑

i∈I si
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∑
(s,p)∈U xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i) zspi + si ≥ Cmin

i yi ∀i ∈ I

si ∈ Z+, ∀i ∈ I

(x,y,z) satisfy (1)-(9)

The third subproblem maximizes the total workload assigned to students with
the restrictions that Umax and Smin keep their optimal values. This maximum
workload is denoted by Wmax and is determined by the following model:

Wmax = max
∑

s∈S

∑
p∈Ps

∑
b∈B w(csp, b)xsp

∑
i∈I si = Smin

∑
(s,p)∈U xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i) zspi + si ≥ Cmin

i yi, ∀i ∈ I

si ∈ Z+, ∀i ∈ I

(x,y,z) satisfy (1)-(9)

To ’optimize’ the final timetable we assign courses as high as possible on the
preference lists, spread the students as equally as possible over the sections of
a course and discourage that one student gets a lot of courses which are on the
bottom of his preference list. Therefore, the fourth subproblem is solved. The
objective function is separated into three terms and has to be minimized under
the restrictions that Umax, Smin and Wmax keep their optimal values.

The term in the objective function to assign courses as high as possible on
the preference lists is: Wp

∑
s∈S

∑
p∈Ps

∑
b∈B w(csp, b)(82− (10− p)2)xsp. As-

signing a course on top of a preference list, p = 1 for this course, adds a lot
less to the objective function than assigning a course on the bottom of the list,
p = 10 for this course. Wp is a weighting factor and also the workload is taken
into account.

If a course has multiple sections, students have to be spread as equally as
possible over the sections. Therefore, Imax

c is introduced as the number of stu-
dents assigned to the section of course c with the most students assigned. Also
the spread Sc of course c is introduced and is equal to the sum over all sections
of the difference between Imax

c and the assigned number of students in each
section. Sc is added to the objective function with a weighting factor Ws.

We also discourage that one student gets a lot of courses of his 7th up to 10th
position of his preference list. A constraint is added to the model that enforces
that every student gets at most one course from these positions, else a penalty
We is paid for each ’extra’ course from these positions. Therefore, the decision
variable Es is introduced for every student s. This variable is equal to the ’extra’
number of courses assigned to student s which are on the 7th up to 10th position
of his preference list.
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This results into the final ILP formulation:

min Wp

∑

s∈S

∑

p∈Ps

∑

b∈B

w(csp, b)(82− (10− p)2)xsp + Ws

∑

c∈C

Sc + We

∑

s∈S

Es

Imax
c(i) ≥ ∑

s∈S

∑
p∈Ps,csp=c(i) zspi ∀i ∈ I

Sc =
∑

i∈I|c=c(i)(I
max
c −∑

s∈S

∑
p∈Ps,csp=c zspi) ∀c ∈ C

∑10
p=7 xsp ≤ 1 + Es ∀s ∈ S

∑
s∈S

∑
p∈Ps

∑
b∈B w(csp, b)xsp = Wmax

∑
i∈I si = Smin

∑
(s,p)∈U xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i) zspi + si ≥ Cmin

i yi, ∀i ∈ I

Es ∈ N ∀s ∈ S

Imax
c , Sc ∈ N ∀c ∈ C

si ∈ Z+ ∀i ∈ I

(x,y,z) satisfy (1)-(9)

5 The Computational Results

The computational results for the academic year 2005-2006 are given in this
section. This academic year was divided into six blocks. Blocks 1 & 2, blocks 3
& 4 and blocks 5 & 6 were scheduled simultaneously.

In all blocks the meetings were on Tuesday morning, Tuesday afternoon,
Wednesday morning and Wednesday afternoon. Every morning and afternoon
was split into two parts. So both blocks contained eight time slots. More details
about the input are given in Table 3. The abbreviation wl stands for workload.

The number of students that requested workload in blocks 1 & 2 was 356 and
the total workload they requested was 1416. Hence, for each block, an average
of two courses of the preference list of 10 courses had to be assigned. Note that
the large number of urgencies in blocks 1 & 2 can be explained by the fact that
first year students are preassigned to courses, because they are not able to make
a choice themselves.

Table 3. Input information for academic year 2005-2006

Blocks |S| |C| |I| |U | offered wl requested wl

1 & 2 356 51 79 590 1504 1416

3 & 4 328 64 88 279 1545 1288

5 & 6 302 58 89 151 1544 1333
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The models introduced in Section 4 are solved by the standard IP solver
CPLEX 10.0. The computations are done on an Intel Pentium M, 2.0 GHz
processor with 1.0 GB internal memory. The values of the weighting factors
were Wp = 10,Ws = 1 and We = 100. The results for the academic year 2005-
2006 are given in Table 4. What can be noted is that the computation time of
CPLEX is negligible.

Table 4. Results for the academic year 2005-2006

block 1 & 2 block 3 & 4 block 5 & 6

Runtime CPLEX (s) 1.38 1.53 1.67

Umax 439 273 134

Smin 0 0 0

W max 1369 1261 1300

average position 3.30 3.64 3.87

bad positions 8 16 39

In blocks 1 & 2 a requested workload of 47, in blocks 3 & 4 a requested
workload of 27 and in blocks 5 & 6 a requested workload of 33 could not be
assigned. Especially in blocks 1 & 2 this is caused by the small difference between
the requested and offered workload. However, the main causes are preference lists
for which it was impossible to assign the requested workload. Some examples of
such wrongly chosen preference lists are:

– an empty preference list, because students didn’t hand it in on time.

– a preference list with less than 10 courses.

– a preference list with not enough different time slots in one of the two blocks.

– a preference list with the same course on more positions. There was even a
student with ten times the same course on his preference list.

If all students would hand in a preference list with 10 courses and enough differ-
ent time slots, then in blocks 1 & 2 only five students would not be assigned to
their requested number of courses, in blocks 3 & 4 and blocks 5 & 6 only three
students.

Table 4 also shows that in blocks 1 & 2 only 439 out of 590 urgency requests
could be assigned. This can be explained by the fact that in these blocks all
courses on the preference list of first year students are set as urgent. Most of
those preference lists contain 6 suitable urgent courses of which at most 4 are
assigned. This means at least two not assigned courses with an urgency for each
first year student.

The average position denotes the average of the positions of all courses as-
signed to a student. On average students request a workload of 4, which mostly
corresponds with four courses. Hence, it can be concluded that students get a
lot of courses which are on top of their preference list. A bad position is a course
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assigned to a student who has the course on 7th up to 10th position on its pref-
erence list. Also from the number of bad positions it can be concluded that the
courses assigned to students are on top of their preference lists.

6 Conclusions

We have formulated, analyzed and solved a real-world timetabling problem that
showed up at the department of Industrial Design of the TU Eindhoven. Our suc-
cessful approach was based on an Integer Linear Programming formulation. The
running time that CPLEX needs for solving the resulting instances is negligible.

The administration and the students of the department of Industrial Design
were highly satisfied with the timetables generated by our program. Most stu-
dents now receive courses that are on top of their preference lists. There still
are a few students who are not satisfied, but in most cases this turned out to
be solely their own fault: they failed to specify correct preferences in the correct
format.
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A Max-Flow Model of Problem Formulation No. 1

Full details of the definition of this network flow problem will be given in the
full version of this paper.
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Fig. 1. The network flow model

B Some NP-hardness Results

The timetabling problem defined in Subsection 3.2 is an NP-hard problem. We
prove this by identifying two independent NP-hard subproblems. Both subprob-
lems result from adding one additional constraint to the problem formulation
No. 1.

In the first subproblem, the additional constraint are lower bounds on the
number of students in the courses. There are no time slots, there is only one
section for each course c with a minimum and a maximum number of partici-
pating students. The workload of all courses is one, and only one block has to
be scheduled. Formally, problem Pmin is defined as follows:

Instance: A set C of courses; for every course c ∈ C a minimum capacity
Cmin

c and a maximum capacity Cmax
c of participating students. A set S

of students; for every student s ∈ S a preference list of some courses in
C, and a number rs of requested courses.

Question: Does there exist an assignment such that (i) every student s
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gets exactly rs courses from its preference list, and such that (ii) for every
course c the number of assigned students is either zero (if the course does
not take place) or falls between the bounds Cmin

c and Cmax
c ?

Theorem 1. Problem Pmin is NP-hard.

Proof. The proof is done by reduction from the exact cover by 3-sets problem:
Given a ground set X = {x1, . . . , xn} and a set T = {t1, . . . , tm} of 3-element
subsets of X, can one select T ′ ⊆ T such that every element of X occurs in
exactly one member of T ′?

From an instance of the exact cover by 3-sets problem, we construct a cor-
responding instance of problem Pmin with n students x1, . . . , xn and with m
courses t1, . . . , tm. Every student s has a demand of one course (rs = 1), and
every course c has minimum and maximum capacity three (Cmin

c = Cmax
c = 3).

Assume X possesses an exact cover T ′. Assign student xs to course tc if and
only if xs ∈ tc and tc ∈ T ′. Since T ′ is an exact cover of X, every student
xs will be assigned to exactly one course tc. The course tc is assigned to three
students if it is in T ′, and to zero students if it is not in T ′. This shows that the
constructed instance of Pmin is a yes-instance. The converse statement can be
seen in a similar way. ut

In the second subproblem, we take problem formulation No. 1 and addition-
ally allow courses with a workload of 2. We consider a situation with only one
section for each course c, only a single block, and without any time slots. (And
there is no minimum capacity of courses.) Problem Pwl is defined as follows:

Instance: A set C of courses; for every course c ∈ C a workload wlc ∈
{1, 2} and a maximum capacity Cmax

c of participating students. A set S
of students; for every student s ∈ S a preference list of some courses in
C, and a desired workload rs.

Question: Does there exist an assignment such that (i) every student
s gets courses with a total workload rs from Ps, and such that (ii) for
every course c the number of assigned students is at most Cmax

c ?

Theorem 2. Problem Pwl is NP-hard.

Proof. The proof is done by reduction from the 3-SAT variant where every vari-
able occurs exactly twice in negated and exactly twice in unnegated form. Con-
sider an arbitrary instance of this 3-SAT variant.

– For every variable xi, we introduce two corresponding students st(xi) and
st(xi) which both request a workload of two.

– For every variable xi, we also introduce a corresponding variable-course
C(xi) which has a workload of two and a capacity of one. C(xi) is in the
preference list of st(xi) and st(xi).

– For every clause cj , we introduce a clause-course C(cj) with a workload of
one and a capacity of two. Clause-course C(cj) is in the preference list of a
student st(xi) (respectively st(xi)) if and only if xi (respectively xi) occurs
as a literal in clause cj .
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Note that in any feasible assignment, student st(xi) (respectively student
st(xi)) will either do course C(xi) or the two courses C(cj1) and C(cj2) for
which literal xi (respectively literal xi) occurs in clauses cj1 and cj2.

Assume that the 3-SAT instance is a yes-instance, and consider a correspond-
ing satisfying truth-assignment. If xi is set to TRUE, then we assign student
st(xi) to the variable-course C(xi), and student st(xi) to the two clause-courses
that correspond to the clauses containing xi. If xi is set to FALSE, we assign
st(xi) to the courses that correspond to the clauses containing xi, and stu-
dent st(xi) to C(xi). Then each student receives his requested workload, and
every course C(xi) gets only a single student. Since every clause has at most
two FALSE literals, the corresponding clause-courses will get at most two stu-
dents. So every yes-instance of the 3-SAT problem leads to a yes-instance of the
timetabling problem.

Now assume that the constructed instance of problem Pwl is a yes-instance.
Then every student st(xi) receives a workload of 2, which implies that the student
must either be assigned to one course C(xi), or to two clause-courses C(cj1)
and C(cj2). If student st(xi) is assigned to the variable-course C(xi), we set
xi to TRUE. If student xi is assigned to some clause-courses, then we set xi

to FALSE. Since each clause-course C(cj) is assigned to at most two students,
every clause contains at most two FALSE literals. Hence, every yes-instance of
Pwl corresponds to a yes-instance of 3-SAT. ut
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