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Abstract Traditional heuristic approaches to the Examination Timetabling
Problem normally utilize a stochastic method during Optimization for the
selection of the next examination to be considered for timetabling within
the neighbourhood search process. This paper presents a technique whereby
the stochastic method has been augmented with information from a weighted
list gathered during the initial adaptive construction phase, with the purpose
of intelligently directing examination selection. In addition, a Reinforcement
Learning technique has been adapted to identify the most effective portions
of the weighted list in terms of facilitating the greatest potential for over-
all solution improvement. The technique is tested against the 2007 Interna-
tional Timetabling Competition datasets with solutions generated within a
time frame specified by the competition organizers. The results generated are
better than those of the competition winner in seven of the twelve examina-
tions, while being competitive for the remaining five examinations. This pa-
per also shows experimentally how using reinforcement learning has improved
upon our previous technique.

1 Introduction

The challenge of producing acceptable solutions for timetabling problems such
as Course and Examination timetabling involves a combination of practical
and research based approaches [1]. Due to the complexity of the underlying
problems and the potential time requirement in providing acceptable solu-
tions to these problems through the use of discrete methods, over this last few
decades research has focused on the use of search based heuristic techniques.
A number of review papers on the subject have been published [2], [3]. As
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with Course timetabling, progress in research within the area of examina-
tion timetabling has been facilitated by the availability of benchmark data
sets [4], [5]. Results generated using a wide range of techniques have been re-
ported, with varying levels of success based on both generality of the solver and
the time taken to solve [2]. A successful technique can be viewed as one which
can produce feasible and workable solutions to a range of differing problems
for a given problem domain within a practical timescale.

An examination scheduling track, based on the post-enrolment examina-
tion timetabling problem was introduced in the second International Timetabling
Competition (ITC2007) [4]. This track introduced a number of real world
datasets, drawn from anonymised data from several institutions worldwide.
New result sets continue to be validated using the competition’s online vali-
dation service despite the competition closing almost five years ago. The next
timetabling competition to be announced will further develop the problem
definition, to further extend the real world aspects of research in this area and
to encourage innovation with the development of new problem solvers [6].

Solving the examination timetabling problem generally takes the form of an
initial construction phase to produce a feasible solution, and an improvement
phase which employ a number different search techniques to find high qual-
ity solutions when given specific objectives [7]. It has been observed that for
certain construction techniques if construction is continued beyond the point
at which a feasible solution has been acquired it is often possible to acquire a
better quality for solution on which the improvement phase can operate [8].

Traditionally heuristic based approaches to timetabling problems have uti-
lized a stochastic method for selection of the examination within a neighbour-
hood search process [9], [10], [11]. This allows for a rapid selection of examina-
tions for the optimization process. It has been shown through experimentation
that a link exists between the phases of construction and optimization [7]. It
is possible to exploit this link to allow for a useful transfer of information
between the phases

Directed Selection Optimization (DSO) exploits co-operation between the
phases of construction and optimization. Information gathered and used, in
the form of a weighted list, during the construction phase is used to influence
and direct examination selection within the subsequent improvement phase.
In the improvement phase the weighted list is split into portions, and using
reinforcement learning techniques, the portions which show the greatest poten-
tial for improvement are preferentially used to influence examination selection.
Highest Soft Constraint Optimization (HSCO) is a new optimization heuristic,
where examination selection is directed by a weighted list, the values of which
are calculated based on an examinations individual soft constraint penalty.
Optimization occurs in order from the examination with the highest to lowest
penalty.

The remainder of the paper is as follows: Section 2 briefly describes the
examination timetabling problem. Section 3 describes the Squeaky Wheel con-
structor, Directed Selection Optimizer and the Highest Soft Constraint Cost
Optimizer. Section 4 describes the experimental environment and time pa-
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rameters used during experimentation. Section 5 presents and discusses the
results and finally section 6 concludes the paper with a brief discussion on the
effectiveness of the technique and potential future research areas

2 The Examination Timetabling Problem

Examination timetabling is a subset of the general timetabling problem, and
has been proven to be NP-hard [12]. Examination timetabling involves allo-
cating a set of events (exams), into a number of available resources (timeslots
and rooms), subject to a series of constraints. Primarily, there are two types of
constraints; hard and soft. Hard constraints must be satisfied for a timetable
to be considered feasible, for example an exam cannot be scheduled in a room
that is too small for the size of the exam, or a student must not have two
exams at the same time. Soft constraints on the other hand represent desir-
able preferences, which are not required to be satisfied for the timetable to
be considered feasible, but may affect the fitness or quality of the resultant
solution. For example, while it may not be preferable for a student to have
two exams in one day, a timetable can still be considered feasible if this does
occur. The main goal when solving this problem is to minimize the number of
soft constraint violations, while at the same time maintaining a feasible solu-
tion. As it is possible to assign a numeric value to the quality of a timetable
based on how well it satisfies the various constraints, it is possible to directly
compare two timetables, where the timetable with the lower overall penalty is
considered the more acceptable solution.

Examination timetabling, unlike Course Timetabling, is overwhelmingly
considered to be a post-enrolment problem. Student enrolment data is gen-
erally known at the time of scheduling, allowing for an accurate use of the
available resources during the examination period.

The requirements for real-world examination timetabling problems are of-
ten unique for each individual institution, with the type and mix of hard and
soft constraint options reflecting the preferences of the institution in ques-
tion. However it is possible to identify a common set of both hard and soft
constraints for benchmark and research use.

Carter, et al. introduced a set of 13 benchmark examination datasets in
1996 [5], drawn from three Canadian high schools, five Canadian universi-
ties, one American university, one British university and one university in
Saudi Arabia. These datasets have been widely tested and used in examina-
tion timetabling research [2]. These datasets were supplemented by a series of
new datasets, drawn from anonymised data provided by several institutions
worldwide, for the 2007 International Timetabling Competition (ITC2007).
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Exams Students Periods Rooms Conflict Density Period Hard Constraints Room Hard Constraints

Exam 1 607 7891 54 7 5.05% 12 0
Exam 2 870 12743 40 49 1.17% 12 2
Exam 3 934 16439 36 48 2.62% 170 15
Exam 4 273 5045 21 1 15.00% 40 0
Exam 5 1018 9253 42 3 0.87% 27 0
Exam 6 242 7909 16 8 6.16% 23 0
Exam 7 1096 14676 80 15 1.93% 28 0
Exam 8 598 7718 80 8 4.55% 20 1
Exam 9 169 655 25 3 7.84% 10 0
Exam 10 214 1577 32 48 4.97% 58 0
Exam 11 934 16439 26 40 2.62% 170 15
Exam 12 78 1653 12 50 18.45% 9 7

Table 1 ITC 2007 Dataset Information

Table 1 lists the main characteristics for each of the examination datasets
provided by the organizers of ITC2007. The conflict density is a measure of
the number of examinations that are in conflict due to student enrolment,
defining how tightly the problem is constrained by student module choice. It
is initially observed that the conflict density for most of the datasets is quite
low, which is reflective of the amount of choice available to students within a
modern curriculum, with a large variation in course or subject choices between
each student. The measure of problem size, based on the number of exams
and students, varies across the datasets. The largest exam dataset could be
argued to be either Exam 3/Exam 11 or Exam 7 and the smallest to be either
Exam 9 or Exam 12. The amount of periods and rooms available will also
have a measurable effect on the difficulty of constructing a feasible solution.
Exam 3 and Exam 11 are almost identical, however Exam 11 has a much
smaller set of period resources available. The differences between Exam 3 and
Exam 11 reflect a ”real-world” situation where an examination session has been
shortened to minimize space and staff costs, while keeping all other existing
constraints where possible.

Recent attempts to solve the examination timetabling problem continue to
involve a variety of different techniques. Genetic Algorithms [13] are modelled
on Darwins theory of evolution. Once an initial population has been con-
structed, it is refined over a series of iterations, with an evaluation function
calculating the fitness of each individual within the population. Late Accep-
tance Hyper-heuristics were introduced by Burke and Bykov [14]. Tradition-
ally, the approach in hyper-heuristics was to compare the current solution with
the solution immediately preceding within the neighbourhood search process.
In late acceptance, the current solution is compared with what was the cur-
rent solution a number of iterations previously. Late acceptance techniques are
able to produce competitive results in a short timeframe. Reinforcement Learn-
ing [15] techniques are used to influence heuristic selection for hyper-heuristics.
A memory log of heuristic actions is kept during execution, with successful ac-
tions being rewarded and unsuccessful actions being punished. With this log,
successful actions are chosen more often and unsuccessful actions are chosen
less often across the search space. Both long term [15] and short term [16]
memories have been explored in this technique. Tabu Search [17], [18] is a
local search based technique. Unlike other such techniques, it maintains a list
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of solutions that have recently been visited, which is used to prevent the op-
timizer from repeatedly considering similar neighbourhoods, helping to avoid
local optima. Hill Climbing is the simplest local search algorithm, introduced
by Appleby in 1961 [19]. In Hill Climbing a candidate solution is only accepted
if it has a better or equivalent fitness to the current one. Hill Climbing aims to
converge quickly, but often has a final solution of relatively poor quality as it
tends to get trapped in local optima. Simulated Annealing was introduced as
a general optimization technique by Kirkpatrick, et al in 1983 [20]. Simulated
Annealing is broadly similar to hill-climbing, however the technique is able to
accept worse solutions through the use of a probability function and decreasing
temperature parameter. Great Deluge was introduced by Dueck [21] in 1990
as a faster alternative to Simulated annealing. Great Deluge uses a bound-
ary condition, rather than a probability function for the acceptance of worse
solutions. In Great Deluge the boundary is initially set slightly higher than
the initial solution, and is reduced gradually throughout the improvement pro-
cess. The Extended Great Deluge was introduced by McMullan [22] for Course
Timetabling, and later for Examination Timetabling [23]. The Extended Great
Deluge algorithm adds a reheat mechanic similar to that employed in Simu-
lated Annealing, where after a period of non-improvement the Great Deluge
algorithm would self-terminate, the Extended Great Deluge employs a reheat
function to widen the boundary condition to allow for the further acceptance
of worse solutions in an attempt to escape local optima. Traditional problem
solvers have primarily been implemented as single threaded applications. Mod-
ern desktop and server hardware are highly optimized for parallel workloads,
and previously implemented solvers no longer take full advantage of the avail-
able hardware when executed on these machines. Ant Algorithms, introduced
by Dorigo [10] and implemented for the examination timetabling problem by
Eley [24], were among the first parallel implementations to solve the problem.
Each ant works concurrently and independently to build a complete, or partial
solution starting from an initial state defined by problem dependent criteria.
The Scatter Search meta-heuristic has recently been implemented to execute
in a parallel and distributed manner [25] over a series of independent servers.

3 Directed Examination Selection

Directed Selection, introduced in[26], is extended here to encompass a three
phase process, building upon elements used in the Extended Great Deluge
(EGD) algorithm introduced by McMullan [22]. The first phase is a Squeaky
Wheel (adaptive) constructor, which is used to construct a series of initial
timetables. Once construction has completed the best timetable and the weighted
list used during construction is passed into the Directed Selection Optimiza-
tion (DSO) phase. DSO utilizes the weighted list to influence the selection
of the examination for optimization. After a number of non-improving reheat
actions, the current best timetable is passed to the Highest Soft Constraint
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Cost Optimization phase. When complete, the timetable is returned to the
DSO phase while there is remaining execution time.

Start timer;
Read examination file;
Build clash information;
Squeaky Wheel Construction;
while time remaining do

Directed Selection Optimization;
Highest Soft Constraint Optimization;

end
Output results;

Algorithm 1: Sequence of Execution

3.1 Squeaky Wheel Construction

Squeaky Wheel (adaptive) construction [27] is an iterative construction pro-
cess, building an initial schedule by placing one exam at a time, in the order
determined by a weighted sequence. There are a number of different methods
for determining the initial order of the weighted list, the technique presented
here calculates the initial ordering based on examination size and the number
of conflicts. Each exam is assigned to the first available time and room com-
bination, where possible, ensuring that a feasible solution is maintained while
minimizing soft constraint violations. If an exam cannot be scheduled in the
current iteration, it is left unscheduled and the constructor moves onto the
next exam. When an exam is scheduled a weighting based upon its current
penalty, as defined by the various soft constraint violations, is added to the
stored weighting in the weighted list. If an exam cannot be scheduled a suitably
large weighting is used instead. Once an attempt has been made to schedule
all exams, the weighted list is re-sorted and subsequently those exams with
the highest weighted value (or most difficult exams) are first to be scheduled
on the next iteration or ”run” of the constructor. The weightings held in the
list evolve over the duration of the entire construction process.
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Read in the problem file into memory and build conflict and suitability matrices;
Calculate an initial weighting based on pre-defined criteria;
while stopping criteria not met do

foreach exam ei in weightedList do
for all suitable timeslots ti of ei do

if CanSchedule(ei, ti) then
best penalty and store best (bestti);

end

end
if multipleBest found then

Schedule(ei, randomBestti) and store associated weighting in
weightedList;

end
else if bestTi found then

Schedule (ei, bestti) and store associated weighting in weightedList;
end
else

Leave exam unscheduled and add large weighting in weightedList;
end

end
Sort(weightedList);

end

Algorithm 2: Squeaky-wheel (Adaptive) construction

3.2 Directed Selection Optimization

Directed Selection Optimization (DSO) is a new technique introduced by
Hamilton-Bryce, McMullan and McCollum [26]. It is based on the premise
that there exists a link where useful information can be passed from an adap-
tive based construction phase to an EGD based optimization phase [7]. It
was shown in [26] that information which is traditionally discarded during the
construction phase can be fed in to the optimization phase to influence and
direct the selection of examinations for the neighbourhood search process. In
Directed Examination Selection, the traditionally random selection of exam-
inations is augmented with a portion of the weighted list generated during
construction. After an initial learning period, reinforcement learning is used
to influence examination selection to the portion(s) of the weighted list which
show the greatest amount of improvement.

For example, the weighted list can be split into quarters. After the initial
learning period the reinforcement learning list has the values (1, 4, 10, 7) for
the first, second, third, and fourth quarters respectively, where 0 represents no
improvement, and higher values represent greater amounts of improvement.
While the highest value represents the potential for the greatest amount of
improvement, it should not be used exclusively. Correspondingly while the
lowest value represents the least potential for improvement, it should not be
excluded from use. Therefore an element of chance should be introduced by
simulating dice rolls, with the highest improving portion having approximately
a 50% chance of being used, with each next portion of the weighted list having
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a lesser chance. Finally if no portion of the weighted list has been selected then
a number of random examinations equal to the portion size of the weighted list
are selected. Through experimentation it was found that sorting the reinforce-
ment learning list approximately every ten seconds provided good performance
while also ensuring that the values in the list do not become ’stale’ as the im-
provement process continues. As in [26], for performance reasons the weighted
list is sorted during a reheat action. It is possible to sort the reinforcement
learning list more often than the weighted list, due to the relative size differ-
ences between the lists. During initial experimentation it was found that it is
possible to over-influence the selection of examinations to the detriment of the
optimization process. This is prevented by applying a simulated ’die roll’ to
determine whether to use specific portions of the weighted list, or default to
selecting examinations at random.

Sort Reinforcement Learning List (rlList);
if rnd.Next (1,6) >= 3 then

Use best portion of weightedList;
else if rnd.Next (1, 6) >= 4 then

Use next best portion of weightedList;
else if rnd.Next (1,6) ¿= 5 then

Use next best portion of weightedList;
else if rnd.Next (1,6) == 6 then

Use next best portion of weightedList;
else

Select random exams for optimization;
end

Algorithm 3: Influencing Examination Selection

Once examination selection has occurred, the remainder of the optimiza-
tion process is similar to the EGD algorithm. On each iteration, one of two
neighbourhood heuristics is selected; either move or swap, and an attempt is
made to apply the chosen heuristic to the selected examination list. In the new
technique, boundary acceptance has been replaced with Late Acceptance Cri-
teria. Late Acceptance Criteria was introduced by Burke and Bykov [28] [14],
wherein a candidate solution is compared for acceptance against the current
solution a number of iterations previously. This can be implemented as a simple
queue structure of a predefined size, wherein the current solution is compared
against the head value. At each iteration the head value is removed, if the
candidate solution is accepted its cost is inserted onto the end of the queue,
and if the candidate solution is rejected the last accepted cost is inserted onto
the end of the queue. At the beginning of the optimization process the entire
queue is initialised to the value of the initial cost function of the timetable
undergoing optimization. The reheat mechanic from the EGD algorithm has
been retained, to allow the algorithm an attempt to escape from local optimum
conditions. Finally as with the EGD algorithm, the process will self-terminate
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when a lack of improvement has been observed for a specified number of re-
heats of the late acceptance list.

Set the initial solution s using a construction heuristic;
Calculate initial cost function f(s); Initialize Late Acceptance list (laList);
while stopping criteria not met do

Select portion of weightedList (optList) to use based on Reinforcement Learning
criteria or a random exam;
Select neighbourhood Heuristic S*;
for all exams in optList do

Apply S* on exam;
Calculate f(s*);
if f(s*) <= f(s) or f(s*) <= laList.FirstItem then

Accept s = s*;
Add new f(s) to laList;
Update Reinforcement Learning Criteria with success;

else
Add existing f(s) to laList;
Update Reinforcement Learning Criteria with fail;

end
if no improvement in given time T then

Increase all values in laList by 10%;

end

Algorithm 4: Directed Selection Optimization (DSO)

3.3 Highest Soft Constraint Optimization

Highest Soft Constraint Optimization (HSCO) is a new optimization heuristic
introduced here influenced by the Highest Cost construction heuristic intro-
duced by Pillay and Banzhaf [29] [13]. The Highest Cost construction heuris-
tic calculates the soft constraint cost of scheduling an examination given the
current state of the timetable and the examination with the highest cost is
scheduled first. In HSCO, the soft constraint penalty for each examination in
the timetable is calculated. An attempt is then made to optimize the timetable
in order from the examination with the highest soft constraint cost. As with
the previous optimization phase, HSCO has been implemented with Late Ac-
ceptance criteria for boundary acceptance. During initial experimentation it
was found that the neighbourhood swap heuristic used during the DSO phase
resulted in degraded performance when used in the HSCO phase as it resulted
in an examination being revisited multiple times during the search process. As
such the HSCO phase contains only a neighbourhood move heuristic.

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

226



Set the initial solution s using a construction heuristic;
Improve the initial solution s using DSO;
Calculate cost function f(s);
Initialize Late Acceptance list (laList);
while stopping criteria not met do

for all exams in timetable do
Calculate soft constraint penalty on individual exam basis;
Store penalty in scList;

end
Sort scList by penalty;
for all exams in scList do

Apply neighborhood move on exam;
Calculate f(s*);
if f(s*) <= f(s) or f(s*) <= laList.FirstItem then

Accept s = s*;
Add new f(s) to laList;

else
Restore last best s;
Add existing f(s) to laList;

end

end

end

Algorithm 5: Highest Soft Constraint Optimization (HSCO)

4 Experimental Environment

The algorithm was implemented and tested on a PC with an Intel Xeon E5-
1603 2.8GHz processor, 8GB RAM and Windows 7. The program was coded in
C# targeting the .NET Framework 4.5. For each problem set, the program was
executed for ten iterations, with a 240 second time limit per iteration deter-
mined by a benchmarking application released by the competition organizers.
During initial experimentation it was found that allowing adaptive construc-
tion to execute for approximately 10% of the total execution time provided
the best results with the new code.

5 Results and Analysis

The random seed used for generation of the results below has been recorded
to ensure repeatability of the experiments. Initial experimentation identified
that splitting the weighted list into sixths provided a greater improvement than
any larger split, as well as good performance overall for the new optimization
phases.

As with the EGD, the chosen neighbourhood search heuristics have been
kept deliberately simple. While more complex heuristics can identify the opti-
mal move, under previous experimentation these were found to have the effect
of directing the search too intensively, resulting in more frequent local opti-
mum situations [7]. The use of relatively simple search heuristics ensures that
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the process is not protracted by time consuming explorations of the search
space. For reference, SD is the Standard Deviation.

Exam 1 Exam 2 Exam 3 Exam 4

EGD DS EGD DS EGD DS EGD DS

Worst 5865 5405 495 430 10909 10813 24405 22464
Best 5377 5186 435 405 10236 9399 19171 19031
Average 5598.5 5302.1 454.6 418.1 10444.4 10036.6 20241 20531.3
SD 198.9630 71.5766 17.9580 8.9747 201.5403 496.6016 1516.1996 1241.7174

Table 2a Results for Exams 1 to 4 using ITC 2007 time limit

Exam 5 Exam 6 Exam 7 Exam 8

EGD DS EGD DS EGD DS EGD DS

Worst 3349 3337 26465 26575 4688 4219 8669 7704
Best 3090 3117 25940 26055 4475 3997 8050 7303
Average 3199.7 3236.8 26240 26253.5 4567.8 4115.7 8353.5 7555.1
SD 75.1059 75.6333 157.9557 166.9340 60.1956 69.6867 177.7734 135.4035

Table 2b Results for Exams 5 to 8 using ITC 2007 time limit

Exam 9 Exam 10 Exam 11 Exam 12

EGD DS EGD DS EGD DS EGD DS

Worst 1185 1124 15805 15940 132483 34773 5871 5564
Best 1049 1048 14636 14789 31080 30311 5311 5369
Average 1113.6 1089.8 15332.2 15167.9 68217.8 31415.1 5596.9 5464.4
SD 41.6445 24.0361 344.1898 413.5965 39829.9124 1339.0058 151.0875 63.9083

Table 2c Results for Exams 9 to 12 using ITC 2007 time limit

Tables 2a, 2b and 2c compare the new Directed Selection technique against
the Extended Great Deluge algorithm. The new technique is able to produce
better results than the EGD algorithm in nine of the twelve datasets. For
Exams 1, 2, 8, 9, 11 and 12 the new Directed Selection (DS) technique is
also able to produce more consistent results, as measured by the standard
deviation, than those generated with the EGD algorithm.

Exams 4, 5 and 6 are the only instances where the original EGD algorithm
outperforms DS. These specific instances have the lowest number of room and
time combinations, and as such there is relatively small freedom of movement
during the optimization process. This affects both the DSO and HSCO phases
due to the nature of the neighbourhood heuristics involved. Due to the smaller
freedom of movement, and the more focused examination of the search space,
fewer improvements are identified. EGD is not affected as much due to its

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

228



exclusive use of stochastic selection, resulting in a greater examination of the
whole search space.

Directed Selection Other Techniques

Best Average
Müller

ITC 2007 [30]
Adaptive Linear
Combination [31]

Graph
Colouring [9]

Multistage
Algorithmic [32]

Exam 1 5186 5302.1 4370 5231 6234 5814
Exam 2 405 418.1 400 433 395 1062
Exam 3 9399 10036.6 10049 9265 13002 14179
Exam 4 19031 20531.3 18141 17787 17940 20207
Exam 5 3117 3236.8 2988 3083 3900 3986
Exam 6 26055 26253.5 26585 26060 27000 27755
Exam 7 3997 4115.7 4213 10712 6214 6885
Exam 8 7303 7555.1 7742 12713 8552 10449
Exam 9 1048 1089.8 1030 1111 N/A N/A
Exam 10 14789 15167.9 16682 14825 N/A N/A
Exam 11 30311 31415.1 34129 28891 N/A N/A
Exam 12 5369 5464.4 5535 6181 N/A N/A

Table 3 Comparison of best results and other techniques that keep competition time limits

Table 3 compares the new Directed Selection technique against those of
Müller and other recently published research that utilizes the competition
rules for time limits. Due to the prior unavailability of the hidden competition
datasets, comparison results are not widely available for research that has been
published post competition. While Müller’s four phased technique continues
to show its strength by producing the lowest penalties of all the approaches
listed in four of the twelve datasets, Directed Selection is able to produce lower
penalties for five of the twelve datasets. When compared to other post com-
petition techniques, Directed Selection is able to produce significantly lower
penalties for six of the eight public datasets.

Directed Selection Other Techniques

Best Average
Extended

Great Deluge [23]
Grammatical Evolution

Hyper-heuristic [33]
Pursuit of Better Results
Using Grid Resources [34]

Distributed
Scatter Search [25]

Exam 1 5186 5302.1 4633 4362 4699 4128
Exam 2 405 418.1 405 380 385 380
Exam 3 9399 10036.6 9064 8991 8500 7769
Exam 4 19031 20531.3 15663 15094 14879 13103
Exam 5 3117 3236.8 3042 2912 2795 2513
Exam 6 26055 26253.5 25880 25735 25410 25330
Exam 7 3997 4115.7 4037 4025 3884 3537
Exam 8 7303 7555.1 7461 7452 7440 7087
Exam 9 1048 1089.8 1071 N/A N/A 913
Exam 10 14789 15167.9 14374 N/A N/A 13053
Exam 11 30311 31415.1 29180 N/A N/A 24369
Exam 12 5369 5464.4 5693 N/A N/A 5095

Table 4 Comparison of best results and other techniques that do not use ITC 2007 time
limits

Table 4 compares the new Directed Selection technique against those of
recently published research that do not utilize the competition rules for time
limits. While the technique understandably is out preformed across all of the
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data sets due to the significantly shorter time limit used, the results produced
remain competitive. It is worth noting that the difference between the best
recorded penalties and the technique presented here is small when considering
the difference in execution time; 4 hours for Distributed Scatter Search and
240 seconds for Directed Selection.

6 Conclusion

This paper presents a new optimization technique which can successfully utilize
information gathered during adaptive construction to direct and influence the
selection of examinations used in the neighbourhood search process, augment-
ing the traditional stochastic selection method, as well as a new optimization
heuristic inspired by the Highest Cost construction heuristic. These techniques
have successfully been used for solving the Examination Timetabling Problem
as described in the second International Timetabling Competition, ITC 2007.
The combined technique presented has not been tailored specifically for solv-
ing this problem, and could be adapted for solving other problem areas. In
addition to testing against other benchmark datasets, the effectiveness of the
technique to solve other timetabling and scheduling problems will be investi-
gated in future work.

Traditional scheduling techniques have primarily been implemented as sin-
gle threaded applications. Over the past five years, there has been a significant
increase in the availability of multi-core processors, and it is now common for
modern desktop and laptop computers to contain processors which have mul-
tiple physical cores and are highly optimized for parallel processing. Due to
this hardware shift, traditional schedulers no longer take full advantage of the
underlying hardware. Future work will look into exploiting parallelism inher-
ent in modern computing. While the Directed Selection technique presented
here does not extend itself easily to traditional parallelism, this capability of
modern processors can be exploited in other ways. Work is currently involved
in identifying how multiple threads or processes working independently on a
single problem, while also sharing useful information about the nature of the
underlying problem, can be exploited to further improve upon the optimization
process.

References

1. B. McCollum, “A perspective on bridging the gap between theory and practice in
university timetabling,” Practice and Theory of Automated Timetabling VI, vol. 3867,
pp. 3–23, 2007.

2. R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y. Lee, “A survey of search
methodologies and automated system development for examination timetabling,”
Journal of Scheduling, vol. 12, no. 1, pp. 55–89, Oct. 2008.

3. S. Kristiansen and T. R. Stidsen, “A Comprehensive Study of Educational Timetabling
- a Survey,” Department of Management Engineering, Technical University of
Denmark, no. November, 2013.

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

230



4. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D.
Gaspero, R. Qu, and E. K. Burke, “Setting the Research Agenda in Automated
Timetabling: The Second International Timetabling Competition,” INFORMS Journal
on Computing, vol. 22, no. 1, pp. 120–130, May 2009.

5. M. W. Carter, G. Laporte, and S. Y. Lee, “Examination Timetabling : Algorithmic
Strategies and Applications,” The Journal of the Operational Research Society, vol. 47,
no. 3, pp. 373–383, 1996.

6. B. McCollum, P. Mcmullan, T. Müller, and A. J. Parkes, “Next Steps for the Examina-
tion Timetabling Format and Competition,” Proceedings of PATAT 2012, pp. 418–420,
2012.

7. E. K. Burke, G. Kendall, B. McCollum, and P. Mcmullan, “Constructive
versus improvement heuristics: an investigation of examination timetabling,” 3rd
Multidisciplinary International Scheduling Conference: Theory and Applications, pp.
28–31, 2007.

8. E. Burke and J. Newall, “Solving Examination Timetabling Problems through
Adaption of Heuristic Orderings,” Annals of Operations Research, vol. 129, no. 1-4,
pp. 107–134, Jul. 2004.

9. N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph coloring constructive
hyper-heuristic for examination timetabling problems,” Applied Intelligence, vol. 37,
no. 1, pp. 1–11, Aug. 2011.

10. M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant Algorithms for Discrete
Optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, Apr. 1999.

11. J. H. Obit, D. Ouelhadj, D. Landa-Silva, and R. Alfred, “An Evolutionary
Non-Linear Great Deluge Approach for Solving Course Timetabling Problems,” IJCSI
International Journal of Computer Science Issues, vol. 9, no. 4, pp. 1–13, 2012.

12. T. B. Cooper and J. H. Kingston, “The Complexity of Timetable Construction Prob-
lems,” Lecture Notes in Computer Science, vol. 1153, pp. 281–295, 1996.

13. N. Pillay and W. Banzhaf, “An informed genetic algorithm for the examination
timetabling problem,” Applied Soft Computing, vol. 10, no. 2, pp. 457–467, Mar. 2010.

14. E. K. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing for exam
timetabling problems,” PATAT 2008 Conference, Montreal, Canada, 2008.
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