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Signal and noise of Fourier reconstructed fMRI data
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bstract

In magnetic resonance imaging, complex-valued measurements are acquired in time corresponding to spatial frequency measurements in space
enerally placed on a Cartesian rectangular grid. These complex-valued measurements are transformed into a measured complex-valued image
y an image reconstruction method. The most common image reconstruction method is the inverse Fourier transform. It is known that image
oxels are spatially correlated. A property of the inverse Fourier transformation is that uncorrelated spatial frequency measurements yield spatially
ncorrelated voxel measurements and vice versa. Spatially correlated voxel measurements result from correlated spatial frequency measurements.
his paper describes the resulting correlation structure between voxel measurements when inverse Fourier reconstructing correlated spatial frequency
easurements. A real-valued representation for the complex-valued measurements is introduced along with an associated multivariate normal

istribution. One potential application of this methodology is that there may be a correlation structure introduced by the measurement process
r adjustments made to the spatial frequencies. This would produce spatially correlated voxel measurements after inverse Fourier transform
econstruction that have artificially inflated spatial correlation. One implication of these results is that one source of spatial correlation between

oxels termed connectivity may be attributed to correlated spatial frequencies. The true voxel connectivity may be less than previously thought.
his methodology could be utilized to characterize noise correlation in its original form and adjust for it. The exact statistical relationship between
patial frequency measurements and voxel measurements has now been established.

2006 Elsevier B.V. All rights reserved.

ier tra

c
m
i
i
o
v
t
a
e
o
f

eywords: fMRI activation; Complex-valued data; Image reconstruction; Four

. Introduction

In functional magnetic resonance imaging (fMRI), we apply
agnetic field gradients to encode then measure the complex-

alued Fourier transformation (FT) of the effective proton
pin density (PSD) in a real-valued physical object. In fMRI,
omplex-valued measurements are acquired in spatial frequency
pace (usually two-dimensional), also called k-space from the
se of the k variables for its axes (kx, ky). These measurements
re transformed into a complex-valued image by an image
econstruction method. The most common image reconstruction

ethod is the inverse Fourier transform. These discrete complex-

alued measurements, when placed at their proper spatial
requency location, are ideally the discrete FT of the PSD. A dis-
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rete inverse Fourier transform (IFT) is applied to the discretely
easured signal to reconstruct a discretely measured PSD or

mage. The original object or PSD is real-valued, but due to
mperfections in the imaging process, a complex-valued image
f PSDs is produced (Haacke et al., 1999). These complex-
alued measurements are collected to yield a complex-valued
ime course in each voxel. Traditional methods to detect brain
ctivation utilize magnitude-only voxel time courses (Bandettini
t al., 1993; Friston et al., 1994). Work by Menon (2002) and
thers indicate that the generally discarded phase portion of the
MRI voxel time courses may contain information regarding the
rain’s vasculature and that the entire voxel time series either in
he form of real–imaginary or magnitude-phase should be used.
ecently complex-valued methods to detect brain activation
ave been introduced (Nan and Nowak, 1999; Rowe, 2005a,b;
owe and Logan, 2004, 2005). Preliminary work with these

ethods indicate that they can be used in fMRI to postacquistion

uppress venous BOLD (Nencka and Rowe, 2005, 2006; Rowe,
005c; Rowe and Nencka, 2006). These complex-valued detec-
ion methods could be combined with the current methods that

mailto:dbrowe@mcw.edu
dx.doi.org/10.1016/j.jneumeth.2006.07.022
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onnect spatial frequency measurements to voxel measurements
nd a more natural representation of the noise utilized.

After Fourier (or non-Fourier) image reconstruction, images
re complex-valued containing a matrix of real and imaginary
omponents of the measured effective PSD. The real part of the
omplex-valued measurements in each image will be stacked on
op of the imaginary part of the measurements to form a single
eal-valued vector of measurements. A one-to-one relationship
ill be described between the vector of complex-valued mea-

urements in an image and the real-valued vector with twice the
imension of stacked measurements. This one-to-one relation-
hip or correspondence is often called an isomorphism in the
athematical literature. It is known that image voxel measure-
ents are spatially correlated, in measured fMRI data. A prop-

rty of the inverse Fourier transformation is that uncorrelated
patial frequency measurements yield spatially uncorrelated
oxel measurements and vice versa. Additionally, correlated
oxel measurements result from correlated spatial frequency
easurements. The thrust of this paper is to relate the signal

nd noise characteristics of spatial frequency measurements and
ourier reconstructed image measurements. It will be shown that

he true spatial correlation between voxel measurements could
e inflated by correlated noise of spatial frequency measure-
ents and that this correlated noise between spatial frequency
easurements could be adjusted to yield an estimate of the true

patial correlation between voxel measurements. This has many
mplications for fMRI including connectivity results and acti-
ation thresholding (Logan and Rowe, 2004). There has been
uch work on the physiological basis for temporal autocorre-

ations between spatially separated voxels. It has been reported
hat there are spontaneous fluctuations in regional cerebral blood
ow (rCBF) from spatially distinct regions (Biswal et al., 1995).
urther, time-dependent changes in effective connectivity dur-

ng learning have been observed (Buchel et al., 1999).

. Statistical theory

In this section, the statistical properties of the complex-valued
patial frequency measurements are described for a single time
oint image. The statistical properties of the complex-valued
mage measurements from a complex-valued inverse Fourier
ransformation of the complex-valued spatial frequency mea-
urements are described. This is done for a one-dimensional
mage where the characteristics of the transformation in terms
f mean and covariance are easier to understand then generalized
or a two-dimensional image.

.1. One dimension

Consider a one-dimensional horizontal complex-valued mag-
etic resonance image with px complex-valued voxels. To obtain
his image, we must measure px spatial frequencies correspond-
ng to the ky = 0 center line. In this one-dimensional magnetic

esonance image, complex-valued k-space measurements are
aken in time but correspond to specific spatial frequencies. We
ill assume that the k-space measurements are acquired from

eft to right.
ence Methods 159 (2007) 361–369

Let sC = (sC1, . . ., sCpx)T be these px measured complex-
valued spatial frequencies stacked into a px × 1 complex-valued
vector sC that is the sum of s0C, a vector of true noiseless
complex-valued spatial frequencies and εC, a vector of complex-
valued measurement error as in Appendix A where “T” denotes
transposition. As shown in Appendix A, the measurements can
be represented as a single real-valued vector by stacking the px

real measurements upon the px imaginary measurements to yield
the vector s, that is the sum of a vector of true noiseless complex-
valued spatial frequencies s0, and a vector of complex-valued
measurement error ε. Since the vector s is what is measured
with error, it is assumed to be characterized as having a multi-
variate normal distribution with mean s0 and covariance matrix
Λ as described in Appendix A.

The Fourier image reconstruction process to generate a
complex-valued measured image ρC consists of pre-multiplying
the measured spatial frequencies sC by the Fourier matrix
ΩCx in Eq. (A.2). As shown in Appendix A, this is equiva-
lently represented as the pre-multiplication if the real-valued
vector of measured spatial frequencies s by the real-valued
matrix Ωx to arrive at the real-valued representation of the
measured image ρ. The real-valued representation of the mea-
sured image ρ is a linear transformation of the real-valued
representation of the measured spatial frequencies and thus nor-
mally distributed with mean ρ0 =Ωxs0 and covariance matrix
Δ = ΩxΛΩ

T
x .

An example of this methodology might be useful. Although
explicit analytic expressions exist for the mean and covariance
of the complex-valued transformed one-dimensional images
measurements given the mean and covariance of the one-
dimensional spatial frequency measurements, simulations were
carried out to verify the analytic results in addition to deter-
mining those for magnitude-only image measurements where
closed form analytic solutions do not exist due to the nonlinear
and non one-to-one mapping. The simulations were performed
under known conditions. These can be used to precisely char-
acterize the signal and noise of the transformed measurements.
All computations utilized Matlab (The Mathworks, Natick, MA,
USA). Data was generated to mimic a one-dimensional mag-
netic resonance imaging experiment. Although this simulation
is a mathematical ideal and possibly unrealistic, its results are
useful in understanding the properties of the described method-
ology. Random complex-valued error vectors of dimension px

were generated in the form of the real-valued representation. A
large number, L, of random vectors of dimension 2px for the px

real measurements stacked upon the px imaginary measurements
denoted by s1, . . ., sL were generated from a normal distribu-
tion with mean s0 and covariance Λ1 ⊗Λ2. Without loss of
generality, s0 = 0 while Λ1 and Λ2 are taken to be unit vari-
ance correlation matrices. The 2 × 2 correlation matrix Λ1 is
taken to have an off diagonal correlation of �1 = 0.5 while the
px × px correlation matrix Λ2 is taken to be an AR(1) cor-
relation matrix with (i, j)th element �|i−j|

2 where �2 = 0.25.

The number of randomly generated vectors was selected to be
L = 106.

A value of px was chosen to be 8. Although the method-
ology equally applies to larger values, they are not shown to
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Fig. 1. Correlation maps, p = 8, L = 106. (a) Correlation between complex spatial frequency measurements, Corr(s, s). (b) Correlation between complex image voxel
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easurements, Corr(r, r). (c) Correlation between magnitude image voxel meas

aintain the clarity of presentation. The sample correlation
atrix from the L randomly generated one-dimensional spa-

ial frequency vectors was computed as displayed in Fig. 1a.
urther, each random one-dimensional spatial frequency vec-

or was pre-multiplied by the appropriate inverse Fourier
ransform matrix Ωx given in Eq. (A.3) to produce random
ne-dimensional images. The sample correlation matrix of
he real-valued representation ρ of the complex-valued one-
imensional image measurements ρC was computed as dis-
layed in Fig. 1b. The sample spatial frequency correlation
atrix matched its theoretical population correlation matrix in
q. (A.4) and the sample image correlation matrix matched

he population value in Eq. (A.5) utilizing the previously
escribed theory. Further, since an analytic expression for the

heoretical covariance or correlation matrix for magnitude-
nly image quantities can not be found, the L vectors con-
aining real and imaginary image measurements of dimen-
ion 2px were converted to L vectors of dimension px con-

g
t
T
w

ents, Corr(m, m).

aining magnitude-only image quantities. The sample corre-
ation matrix of the magnitude-only image vectors was com-
uted for the as displayed in Fig. 1c. Note that both complex-
alued voxels and real-valued magnitude-only voxels are
orrelated.

.2. Two dimensions

In a two-dimensional echo planar magnetic resonance image,
omplex-valued measurements are taken in time but correspond
o specific spatial frequencies on a Cartesian (kx, ky) grid. In
standard echo planar imaging (EPI) experiment, the measure-
ents are taken in a “zig-zag” pattern. For example, with positive

hase encode steps, the pattern starts at the bottom left of the

rid with negative (kx, ky) values and moves from left to right,
hen right to left and so on, while going from bottom to top.
he left–right direction is called the frequency encode direction
hile the top–bottom direction is called the phase encode direc-
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ion. We will assume that the data is collected according to this
tandard EPI trajectory.

Let SC be a py × px complex-valued matrix of two-
imensional measured spatial frequencies that is the sum of S0C,
matrix of true noiseless complex-valued spatial frequencies

nd EC, a matrix of complex-valued measurement error as in
ppendix B. As shown in Appendix B, the matrix of spatial fre-
uency measurements can be represented as a single real-valued
ector by stacking the rows to form:

= vec(Re(ST
C), Im(ST

C))

here Re( ) and Im( ) denote the operators that return the real
nd imaginary parts of their arguments and vec( ) denotes the
he vectorization operator that stacks the columns of its matrix

rgument. This vector s, is the sum of a vector of true noise-
ess complex-valued spatial frequencies, s0, and a vector of
omplex-valued measurement error, ε. Since the vector s is
hat is measured with error, it is assumed to be characterized

a
i
m
t

ig. 2. Correlation maps, px = py = 8, L = 106. (a) Correlation between complex spatia
oxel measurements, Corr(r, r). (c) Correlation between magnitude image voxel mea
ce Methods 159 (2007) 361–369

s having a multivariate normal distribution with mean s0 and
ovariance matrix Φ as described in Appendix B.

The Fourier image reconstruction process to generate a
omplex-valued measured image RC consists of pre-multiplying
he measured spatial frequencies SC by the Fourier matrix

Cy in Eq. (B.1) and post-multiplying it by ΩT
Cx in Eq.

B.1). As shown in Appendix B, this is equivalently rep-
esented as the pre-multiplication of the real-valued vector
f measured spatial frequencies s by the real-valued matrix

as in Eq. (B.6) to arrive at the real-valued representa-
ion of the measured image ρ. The real-valued representation
f the measured image ρ is a linear transformation of the
eal-valued representation of the measured spatial frequencies
nd thus normally distributed with mean ρ0 =Ωs0 and covari-

nce matrix Γ =ΩΦΩT. The measured py × px complex-valued
mage RC can be found by sequentially putting every px ele-

ents of the vector ρR + iρI into a matrix then taking the
ranspose.

l frequency measurements, Corr(s, s). (b) Correlation between complex image
surements, Corr(m, m).
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only image matrices was computed using the real-valued
representation as displayed in Fig. 2c. Note that both complex-
valued voxels and real-valued magnitude-only voxels are
correlated.
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. Conclusions

This paper presented the resulting spatial correlation between
oxels when Fourier reconstructing correlated spatial frequency
easurements. However, the current methodology is applicable

o any linear transformation. This includes non-Fourier recon-
truction of Fourier encoded data (Cox and McCall, 2004) or
on-Fourier reconstruction of non-Fourier encoded data (Panych
t al., 1996). Additionally, the previously described Fourier Ω
atrices can easily be adjusted to include phase terms as done
hen adjusting for magnetic field inhomogenieties with a field
ap (Jezzard and Balaban, 1995).
Spatially correlated voxels result from correlated spatial fre-

uency measurements. These correlation results may have impli-
ations for functional magnetic resonance imaging. In particular,
emporally autocorrelated spatial frequency measurements pro-
uce spatially correlated voxels. This may have specific impli-
ations for functional connectivity. The true voxel connectivity
ay be less than previously thought. This methodology could be

tilized to characterize noise correlation in its original form and
djust for it. The baseline spatial correlation needs to be con-
idered and accounted for when making statements regarding
onnectivity between voxels in fMRI. Although the normal dis-
ribution has been utilized in the present work, other statistical
istributions could be used. Regardless of the chosen statisti-
al distribution to model the noise, the mean and covariance
esults are still applicable. Additionally, some voxel correlation
ay be lost by the magnitude-only procedure. Making statistical

nferences, interpreting analysis results, and drawing conclu-
ions should be done in light of the current research.
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ppendix A. One-dimensional image

The px × 1 dimensional complex-valued spatial frequency
easurements sC consisting of px × 1 dimensional true underly-

ng noiseless complex-valued spatial frequencies s0C and px × 1
imensional complex-valued measurement error εC can be rep-
esented as

C = s0C + εC = (s0R + is0I) + (εR + iεI)

= (s0R + εR) + i(s0I + εI) (A.1)

here i is the imaginary unit while s0R, s0I, εR and εI are px × 1
imensional real and imaginary vector valued parts of the true
ignal and measurement noise. Let ΩCx be a px × px complex-
alued matrix such as a Fourier type matrix such that

= Ω + iΩ (A.2)
Cx Rx Ix
D.B. Rowe et al. / Journal of Neuro

An example of this methodology might be useful. Although
explicit analytic expressions exist for the mean and covariance
of the complex-valued transformed two-dimensional images
measurements given the mean and covariance of the two-
dimensional spatial frequency measurements, simulations were
carried out to verify the analytic results in addition to deter-
mining those for magnitude-only image measurements where
closed form analytic solutions do not exist due to the nonlinear
and non one-to-one mapping. The simulations were performed
under known conditions. These can be used to precisely char-
acterize the signal and noise of the transformed measurements.
All computations utilized Matlab (The Mathworks, Natick, MA,
USA). Data was generated to mimic a two-dimensional mag-
netic resonance imaging experiment. Although this simulation
is a mathematical ideal and possibly unrealistic, its results are
useful in understanding the properties of the described method-
ology. A large number, L of random matrices of dimension
py × px were generated for the pypx real spatial frequency mea-
surements stacked upon the pypx imaginary spatial frequency
measurements denoted by s1, . . ., sL that were generated from a
normal distribution with mean s0 and covarianceΛ1 ⊗Λ2 ⊗Λ3.
Without loss of generality, s0 = 0 while Λ1, Λ2, and Λ3 are
taken to be unit variance correlation matrices. The py × py cor-
relation matrix Λ1 is taken to be an AR(1) correlation matrix
with (i, j)th element �|i−j|

1 where �1 = 0.25, the 2 × 2 correlation
matrixΛ2 is taken to have an off diagonal correlation of �2 = 0.5
while the px × px correlation matrix Λ3 is taken to be an AR(1)
correlation matrix with (i, j)th element �|i−j|

3 where �3 = 0.5.
The number of randomly generated vectors was selected to be
L = 106.

A value of py = px = 8 was chosen. Although the method-
ology equally applies to larger values, they are not shown to
maintain the clarity of presentation. The corresponding sam-
ple correlation matrix from the L randomly generated noisy
spatial frequency matrices in vector form was computed as
displayed in Fig. 2a. Further, each random complex-valued
spatial frequency matrix in vector form was pre-multiplied
by Ω in Eq. (B.6) equilavent to pre- and post-multiplying in
matrix form by the appropriate inverse Fourier transform matri-
ces ΩCy and ΩT

Cx given in Eq. (B.1). The sample correlation
matrix of the real-valued representation ρ of the complex-
valued image measurements R was computed as displayed
in Fig. 2b. The sample spatial frequency correlation matrix
matched its theoretical population correlation matrix in Eq.
(B.8) and the sample image correlation matrix matched the
population value in Eq. (B.9) utilizing the previously described
theory.

Further, since a simple closed form analytic expression for the
theoretical covariance matrix for magnitude-only image quan-
tities cannot be found, the L matrices of dimension py = px con-
taining real and imaginary measurements were converted to L
matrices of dimension py × px containing magnitude-only image
quantities. The sample correlation matrix of the magnitude-
here ΩRx and ΩIx are real and imaginary matrix valued parts.
hen, the px × 1 dimensional complex-valued inverse Fourier

ransformation ρC of sC can be written (Strang, 1988) as the
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re-multiplication by the complex-valued Fourier matrix as

C = ΩCx × sC = (ΩRx + iΩIx) × [(s0R + εR) + i(s0I + εI)]

= [ΩRx × (s0R + εR) −ΩIx × (s0I + εI)]

+ i[ΩRx × (s0I + εI) +ΩIx × (s0R + εR)]

= [(ΩRxs0R −ΩIxs0I) + (ΩRxεRx −ΩIxεI)]

+ i[(ΩRxs0I +ΩIxs0R) + (ΩRxεI +ΩIxεR)]

= (ρ0R + ηR) + i(ρ0I + ηI) = ρR + iρI

here ρ0R, ρ0I, ηR, and ηI are real and imaginary vec-
or valued parts of the Fourier transformed true signal
image) and transformed measurement noise. If ΩCx were

Fourier matrix, it is [ΩCx]jk = κ (ωJk) where κ = 1 and
= exp[−i2π(j−1)(k − 1)/px] for the forward transformation
hile κ = 1/px andω = exp[+i2π(j − 1)(k − 1)/px] for the inverse

ransformation, where j, k = 1, . . ., px.
This pre-multiplication of a complex-valued vector by a

omplex-valued matrix can be equivalently represented with the
px dimensional real-valued representation:

= Ωx s ,

(
ρR

ρI

)
=
(
ΩRx −ΩIx

ΩIx ΩRx

)(
s0R + εR

s0I + εI

)
(A.3)

s previously described, data collected from a scientific exper-
ment is never precisely known and thus contains both true
ignal and measurement error. Scientific measurement error is
uantified with statistical distributions and inferences drawn.
n most instances, real-valued measurements are taken and
eal-valued statistical distributions utilized. However, in MRI
omplex-valued measurements are taken and thus a complex-
alued statistical distribution needs to be utilized. The data
an be represented using a real-valued representation and a
ultivariate normal distribution (Rowe, 2003). The real-valued

epresentation used here is very general and within this frame-
ork contains the particular representation used to represent the

omplex-valued multivariate normal distribution (Anderson et
l., 1995; Wooding, 1956). The transformation from complex-
alued spatial frequency space to image space modifies proper-
ies of both the true noiseless signal and the measurement noise.
he relationship between correlated complex-valued measure-
ents made in spatial frequency space and the modified cor-

elation between inverse Fourier transformed or reconstructed
omplex-valued measurements in image space is examined.

Using the real-valued representation in Eq. (A.3), let the 2px

imensional vector s = (sTR, s
T
I )

T
be multivariate normally dis-

ributed (Rowe, 2003) with mean and covariance matrix:

0 =
(
s0R

s0I

)
and Λ =

(
Λ11 Λ12

ΛT
12 Λ22

)
(A.4)

omplex multivariate normal structure occurs when

11 =Λ22 =Ψ , −Λ12 =Υ , and ΛT

12 = Υ . That is, when the
ovariance matrix is of a skew-symmetric form as (Wooding,
956; Anderson et al., 1995). The current representation is more
eneral and less restrictive than multivariate complex normal

f
T
t

ce Methods 159 (2007) 361–369

tructure. By carrying out a multivariate transformation of
ariable with the real-valued representation from s to ρ through
=Ωxs, the statistical distribution of ρ is also multivariate
ormally distributed but with mean ρ0 given by

ρ0R

ρ0I

)
=
(
ΩRx −ΩIx

ΩIx ΩRx

)(
s0R

s0I

)
=
(
ΩRxs0R −ΩIxs0I

ΩRxs0I +ΩIxs0R

)

nd covariance matrix Δ = ΩxΛΩ
′
x, given by

Δ =
(
ΩRx ΩIx

ΩIx ΩRx

)(
Λ11 Λ12

ΛT
12 Λ22

)(
ΩT

Rx ΩT
Ix

−ΩT
Ix ΩT

Rx

)
,

11 = ΩRxΛ11Ω
T
Rx −ΩIxΛ

T
12Ω

T
Rx

+ΩRx (−Λ12)ΩT
Ix +ΩIxΛ22Ω

T
Ix,

22 = ΩIxΛ11Ω
T
Ix −ΩRxΛ

T
12Ω

T
Ix

−ΩIx (−Λ12)ΩT
Rx +ΩRxΛ22Ω

T
Rx,

12 = ΩRxΛ11Ω
T
Ix −ΩIxΛ

T
12Ω

T
Ix

−ΩRx (−Λ12)ΩT
Rx +ΩIxΛ22Ω

T
Rx,

21 = ΔT
12 (A.5)

here Ωx is of full rank if it is a Fourier matrix. Again, this
epresentation is more general and less restrictive than multivari-
te complex normal structure (Anderson et al., 1995; Wooding,
956). In the multivariate complex normal case (Anderson et
l., 1995; Wooding, 1956) whereΛ11 =Λ22 =Ψ , −Λ12 =Υ , and
T
12 = Υ , the covariance matrix Δ is

11 = ΩRxΨΩ
T
Rx −ΩIxΥΩ

T
Rx +ΩRxΥΩ

T
Ix +ΩIxΨΩ

T
Ix,

12 = ΩRxΨΩ
T
Ix −ΩIxΥΩ

T
Ix −ΩRxΥΩ

T
Rx +ΩIxΨΩ

T
Rx,

21 = −Δ12, Δ22 = Δ11 (A.6)

here Υ is a skew symmetric matrix, ΥT = −Υ .
It can readily be seen that if the measurement process that

enerates the data produces uncorrelated real and imaginary
hannels, that is, Λ12 = ΛT

12 = 0 but correlated within the real
nd imaginary channels, then after transformation the real and
maginary channels are correlated both between and within. It
hould be noted that if Υ = 0 and Ψ =ψ2Ipx, then Δ= δ2I2 ⊗ Ipx

here δ=ψ2/px for the inverse transformation and δ=ψ2px for
he forward transformation. The Kronecker product ⊗ was uti-
ized which multiplies every element of its first matrix argument
y its entire second matrix argument.

The above specific multivariate complex normal structure
ould alternatively be developed utilizing the complex multi-
ariate normal distribution (Anderson et al., 1995; Wooding,
956). A property of the complex multivariate normal distri-
ution is that if sC ∼ NC (s0C, ΛC), then ρC =ΩCxsC is also
omplex normal distributed, ρC ∼ NC (ΩCxs0C, ΩCxΛCΩH

Cx)
here ΛC =Ψ + iΥ and “H” denotes the Hermitian or complex

onjugate transpose.

After image reconstruction, the usual procedure is to convert

rom real and imaginary images to magnitude and phase images.
he phase is generally discarded in fMRI and magnitude-only

ime course data are analyzed. The conversion from real and
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maginary images to magnitude and phase images is a nonlinear
ransformation and thus the joint distribution of the magnitude
mage measurements is not straightforward. On an individual
asis, the measured magnitude quantity in voxel j in each mag-
itude image is

j =
√

(ρ0Rj + ηRj)2 + (ρ0Ij + ηIj)2

here ρ0Rj and ρ0Ij are the means in the real and imaginary parts
hile ηRj and ηIj are the zero mean real and imaginary Gaussian

rror terms with variancesΔjj and�px+j, px+j, j = 1, . . ., px, gen-
rally assumed to be the same. It is well known (Gudbjartsson
nd Patz, 1995; Rice, 1954; Rowe and Logan, 2004) that the
easured magnitude voxel intensity mj is Ricean distributed

ith parameters ρ0j =
√
ρ2

0Rj + ρ2
0Ij , being the pixel magni-

ude intensity in the absence of noise, and Δj =Δjj =�px+j,px+j,
eing the equal variances of the real and imaginary parts. The
opulation correlation between Ricean distributed magnitude
mage measurements will be examined through simulation.

ppendix B. Two-dimensional image

The py × px dimensional complex-valued spatial frequency
easurements SC consisting of py × px dimensional true under-

ying noiseless complex-valued spatial frequencies S0C and
y × px dimensional complex-valued measurement error EC can
e represented as

C = (S0R + iS0I) + (ER + iEI) = (S0R + ER) + i(S0I + EI)

here i is the imaginary unit while S0R, S0I, ER and EI are real
nd imaginary matrix valued parts of the true spatial frequencies
ignal and measurement noise. LetΩCx andΩCy be px × px and
y × py complex-valued Fourier matrices such that

Cy = ΩRy + iΩIy and ΩCx = ΩRx + iΩIx (B.1)

here ΩRy and ΩRx are real while ΩIy and ΩIx are imaginary
atrix valued parts.
Then, the py × px complex-valued inverse Fourier transfor-

ation RC of SC can be written as

C = ΩCy × SC ×ΩT
Cx = (ΩRy + iΩIy) × [(S0R + ER) + i(S0

= (ΩRy + iΩIy) × {[(S0R + ER) ×ΩT
Rx − (S0I + EI) ×ΩT

I

= (R0R +NR) + i(R0I +NI) = RR + iRI

here

0R = (ΩRyS0RΩ
T
Rx−ΩRyS0IΩ

T
Ix−ΩIyS0RΩ

T
Ix−ΩIyS0IΩ

T
Rx),

NR = (ΩRyERΩ
T
Rx −ΩRyEIΩ

T
Ix−ΩIyERΩ

T
Ix −ΩIyEIΩ

T
Rx),

R0I = (ΩRyS0RΩ
T
Ix−ΩRyS0IΩ

T
Rx−ΩIyS0RΩ

T
Rx−ΩIyS0IΩ

T
Ix),
NI = (ΩRyERΩ
T
Ix −ΩRyEIΩ

T
Rx −ΩIyERΩ

T
Rx −ΩIyEIΩ

T
Ix)

re real and imaginary matrix valued parts of the inverse Fourier
ransformed true signal (image) and measurement noise. Each

Ω

T
ρ
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EI)] × (ΩT
Rx +ΩT

Ix)

i[(S0R + ER) ×ΩT
Ix + (S0I + EI) ×ΩT

Rx]}

ow in the curled bracket part of the expression for RC is a one-
imensional complex-valued transformation:

CΩ
T
Cx =

⎛
⎜⎜⎝

(ΩCxsC1)T

...

(ΩCxsCpy )
T

⎞
⎟⎟⎠ (B.2)

s in the previous one-dimensional case where sTCj represents
he jth row in SC that is px dimensional, j = 1, . . ., py. The com-
lex matrices ΩCy and ΩCx can be Fourier matrices. This pre-
nd post-multiplication of a complex-valued matrix by complex-
alued matrices could be equivalently represented with a sim-
lar real-valued representation. This could be accomplished by
orming a py × 2px dimensional matrix where a given row j, is

sTjR, sTjI)
T

a real-valued representation of the rows of SC. This

eal-valued matrix is then post-multiplied by ΩT
x . The resul-

ant real-valued matrix is then reformed into a complex-valued
atrix and another real-valued representation made from the

olumns to form a 2py × px matrix. This new real-valued rep-
esentation is then pre-multiplied by Ωy and the resultant real-
alued matrix is then reformed into a complex-valued matrix
eing the measured two-dimensional image. In the procedure
ust described, it is difficult to keep track of individual measure-

ents and the correlations between other measurements within
he array.

A simple representation from matrix algebra can be utilized
o assist with this endeavor. It is known (Harville, 1999) that the
ectorization of the triple product of conformable matrices A, B,
nd C can be written as

ec(ABC) = (CT ⊗ A)vec(B)

hich translates to our application as

C = (ΩCy ⊗ΩCx)vec(ST
C)

here vec is the vectorization operator that stacks the columns
f its matrix argument and ρC = vec(RT

C).
As previously noted, the matrix of spatial frequency mea-

urements can be described with a real-valued representation.
he large Kronecker product can be represented as

C = ΩCy ⊗ΩCx (B.3)

C = (ΩyR + iΩyI) ⊗ (ΩxRiΩxI) (B.4)

C = [(ΩyR ⊗ΩxR) − (ΩyI ⊗ΩxI)]

+ i[(ΩyR ⊗ΩxI) + (ΩyI ⊗ΩxR)] (B.5)
C = ΩR + iΩI (B.6)

he complex-valued image vector can be represented as
C =ΩCsC. We can pre-multiply the complex-valued spatial
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requency vector by this complex-valued matrix as in the one
imensional image case, or equivalently with a similar real-
alued representation:

= Ω s ,

(
ρR

ρI

)
=
(
ΩR −ΩI

ΩI ΩR

)(
s0R + εR

s0I + εI

)
(B.7)

here the real-valued vector of spatial frequencies is formed
y

= vec(Re (ST
C), Im(ST

C))

hile Re( ) and Im( ) denote the operators that return the real
nd imaginary parts of their arguments and vec( ) denotes the
ectorization operator that stacks the columns of its matrix argu-
ent.
The Fourier image reconstruction process to generate a

omplex-valued measured image RC consists of pre-multiplying
he measured spatial frequencies SC by the Fourier matrixΩCy in
q. (B.1) and post-multiplying it byΩT

Cx in Eq. (B.1). As shown
bove, this is equivalently represented as the pre-multiplication
f the real-valued vector of measured spatial frequencies s by
he real-valued matrixΩ in Eq. (B.6) to arrive at the real-valued
epresentation of the measured image ρ. The vector s is assumed
o be characterized as having a multivariate normal distribution
ith mean s0 and covariance matrix Φ denoted as

∼ N(s0, Φ) (B.8)

he real-valued representation of the measured image ρ is a
inear transformation of the real-valued representation of the

easured spatial frequencies and thus normally distributed with
ean ρ0 =Ωs0 and covariance matrix Γ =ΩΦΩT denoted as

∼ N(ρ0, Γ ) (B.9)

he measured py × px complex-valued image RC can be found
y sequentially putting every px elements of the vector ρR + iρI
nto a matrix then taking the transpose.

In terms of complex-valued matrices, the mean of the trans-
ormed variables can be written as

0C = ΩyS0CΩ
T
x = (ΩyR + iΩyI)(S0R + S0I)(Ω

T
xR + iΩT

xI)

= R0R + iR0I

s previously defined but the covariance of the transformed mea-
urements is not easily represented with complex numbers and
equires the larger real-valued representation.

Again, after image reconstruction, the usual procedure is
o convert from real and imaginary images to magnitude and
hase images. The phase is generally discarded in fMRI and
agnitude-only time course data is analyzed. The conver-

ion from real and imaginary images to magnitude and phase
mages is a nonlinear not one-to-one transformation and thus
he joint distribution of the magnitude-only image quantities is

ot straightforward. However an approximation to the correla-
ion of the square of the magnitudes, or in general any quadratic
orm exists. Further, the correlation of squared magnitudes is a
ood approximation to the correlation of magnitudes. If any pair

P
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f random variables is transformed by the same function (here
he square root), their correlation remains roughly the same, by
Taylor series expansion argument.

On an individual basis, the measured magnitude quantity in
oxel (i, j) in each magnitude image is

jk =
√

(R0Rjk +MRjk)2 + (R0Ijk +MIjk)2

here R0Rjk and R0Ijk are the means in the real and imagi-
ary parts, NRjK and NIjk are the zero mean real and imag-
nary Gaussian error terms with variances Γjpx+k,jpx+k and
pxpy+jpx+k,pxpy+jpx+k, j = 1, . . ., px, k = 1, . . ., py, generally
ssumed to be the same.

It is well known (Gudbjartsson and Patz, 1995; Rice,
954; Rowe and Logan, 2004) that the measured magni-
ude voxel intensity mj is Ricean distributed with parame-

ers Mjk =
√
R2

0Rjk + R2
0Ijk, being the pixel magnitude inten-

ity in the absence of noise, and Γjk = Γjpx+k,jpx+k =
pxpy+jpx+k,pxpy+jpx+k, being the equal variances of the real
nd imaginary parts. The population correlation between Ricean
istributed magnitude image measurements will be examined
hrough simulation.
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