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Abstract

In a paper that appeared in volume 2 (2011) of SIAM Financial Math-
ematics by R. Cont, N. Lantos and the author, it was shown that by
writing the solution of the Black-Scholes partial differential equation on
a small set of basis functions the computing time can be dramatically
reduced. In this study we show that it is in fact a P.O.D. method and in
some other variable it is also a spectral method. It allows us to find a good
preconditioning matrix to minimize the ill conditioned linear system, and
even have explicit solutions.
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Introduction

Derivatives like European calls and puts on a single or compound assets are
computed a very large number of times every day. When a closed form solution
is not available, an alternative to Monte-Carlo simulation is to solve the Black-
Scholes partial differential equation (more details can be found in [2, 9, 1], for
example).

A complement to the Finite Element or Finite Difference Method for a nu-
merical solution of the problem is to construct an appropriate basis, smaller in
size but with larger support. Proper Orthogonal Decomposition is the usual
tool for it [5]. At the cost of some preliminary calculations it allows very fast
computations, thereby being well fitted to cases where one needs to solve the
problem many times with different data, which is exactly the situation in finan-
cial engineering.

In [4] it was shown that a set of rescaled calls with constant volatilities forms
a reduced basis with similar performance as POD. In this article we shall show
that it is in fact a variant of POD.
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If τ is the time to the maturity T , K is the strike, r the interest rate, it is
easy to see that by using the forward moneyness, y = erτ SK , as variable, the
pricing of a put P (S, t) comes to solve in R+ × (0,T):

∂τvσ −
σ2y2

2
∂yyvσ = 0, vσ(y, 0) = (1− y)+ (1)

where vσ(y, τ) = erτP (Kye−rτ , T − τ)/K.
When σ is constant, the Black-Scholes formula provides an analytical solu-

tion

vσ(y, τ) =
y
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and erf(y) =
2√
π

∫ y

0

e−x
2

dx (2)

Notice that only σ
√
τ appears; so a change in the volatility and a change in τ

have the same effect. Hence a basis of snapshots in time for (1) can also be

vσ(y, τ) = vΣ(y, τ) +

I∑
i=1

ai(τ)w̄i(y) with w̄i := vσi(y, T )− vΣ(y, T ) (3)

where {σi}i∈I is an appropriate set of constant volatilities and Σ is a chosen
reference volatilities. The PDE verified by u := vσ − vΣ is

∂τu−
σ2y2

2
∂yyu = −(∂τvΣ −

σ2y2

2
∂yyvΣ), u(0) = 0. (4)

Applying Galerkin’s method to (4) with (3) will give the ai(τ). For POD
it is also common practice to use derivative of snapshots rather than the snap-
shots themselves. Here too it is numerically much easier to work with ŵi :=
∂yyvσi(y, T ) instead of w̄i = vσi(y, T ) − vΣ(y, T ) and since ∂yy is a bijection
with appropriate boundary conditions it shouldn’t make much of a difference!

As we shall see a good choice is σi = (2c T i)−
1
2 , i = 1, 2... where c is a

chosen constant. A rapid computation shows that ŵi is proportional to

wi :=
√
ye−αi ln2 y with αi = c i.

This will be the basis chosen here, and c = 1 in the numerical tests.

The POD algorithm In this framework POD means

1. Choose I (in the range 5 to 10)

2. Apply the Gram-Schmidt algorithm to orthogonalize the {wi}i∈I with
respect to the L2(R+) or H1(R+) scalar product (·, ·). Let {pi}i∈I be the
result.

3. Solve (4) on this basis by Galerkin’s method
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4. If the result is not precise enough, add a new element in I and go back to
Step 2.

The ”not precise enough” of Step 4 needs in principle an a posteriori estimate
to become mathematically sound. The selection of a “good new basis vector”
is also difficult in Step 4 and one way is to order the vectors pi so as to have a
decreasing sequence of eigenvalues of the correlation matrix (wi, wj) [6].

Remark 1 For a fixed I, instead of Gram-Schmidt orthogonalization, it is
equivalent to solve the linear system of the Galerkin discretization, by a sin-
gular value decomposition algorithm.

In [4] it was found that the above algorithm is subject to instabilities due
to round-off errors when I > 15. In practice it isn’t a problem because beyond
I ∼ 5 the error is very small and doesn’t decay further. Nevertheless there is a
need to understand why the linear systems are so ill conditioned for larger I.

Note that all spectral methods have the same problem and require orthonor-
mal basis like the Legendre polynomials [3]. So here too we shall demonstrate
that a similar cure is available. To do so we will work with the variable
z = e− ln2 y, because, {y− 1

2wi}i∈I = {zi}i∈I and the Legendre polynomials
P i(z) are the orthogonal basis of {zi}i∈I ; Equivalently, going back to the vari-

able y, P i(e
√
− ln z) is an orthogonal basis equivalent to the one that the POD

algorithm would construct, effectively implementing the above POD algorithm.
Then one may wonder why not work directly with the variable z? Two

reasons:

1. The mapping y → z is not one-to-one on R+.

2. Equation (4) written in z is not very simple; it is, for some appropriate f

∂τu− 2σ2z2 ln
1

z
∂zzu+ σ2z(1 +

√
ln

1

z
− 2 ln

1

z
)∂zu = f, u(z, 0) = 0. (5)

and its coefficients have singularities at z = 0 and z = 1 and it is not clear
that the problem is well posed.

We will show that it is possible to work in z, provided some symmetry about
y = 1 exists in the solution so as to work in z ∈ (0, 1), and we will propose a
finite element solution of the above, for possible use in the future. But here the
numerical results on (5) are not good.

1 Galerkin Approximation on the Basis

1.1 Mathematical Result

Decomposition (3) gives a vσ which satisfies the initial and boundary conditions
of the Black-Scholes equations (1); indeed it is zero at y = 0, it has also the
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right exponential behavior when y → ∞ and it is zero at t = 0. Consider
y → u(y)/

√
y and as before u = vσ − vΣ.

Note that e−ic ln2 y = f(y)i with f(y) = e−c ln2 y. By the Stone-Weierstrass
theorem {f(y)n}n=0,1.. is a basis if y → f(y) is a separating function (i.e.

y → f(y) is one to one, continuous); however e−c ln2 y is a separating function
only on the interval (0, 1) or on (1,∞) but not on (0,∞). So we need a symmetry
assumption about y = 1: u( 1

y ) = 1
yu(y) for (3) to work. Fortunately if σ( 1

y , τ) =

σ(y, τ) then it is easy to show that u has the required symmetry. If symmetry
does not hold then another set of vectors must be added in the basis, such as
{√ywi(y)}i=1,2... More details can be found in [4].

1.2 Implementation

Note that

∂yyw
i =

e−αi ln2 y

y
√
y

(4α2
i ln2 y − 1

4
− 2αi)

∂τvΣ −
σ2y2

2
∂yyvΣ =

(Σ2 − σ2)y2

2
∂yyvΣ =

e−
Σ2τ

8

2Σ
√

2πτ
(Σ2 − σ2)

√
ye

− ln2 y

2Σ2τ (6)

So (3) is

I∑
1

ȧi
√
ye−αi ln2 y−

I∑
1

aie
−αi ln2 yσ2√y(2α2

i ln2 y − 1

8
− αi)

= − e−
Σ2τ

8

2Σ
√

2πτ
(Σ2 − σ2)

√
ye−

ln2 y

2Σ2τ (7)

The Galerkin method requires to multiply this equation by γ(y)
√
ye−αj ln2 y (the

extra factor γ(y) is a weight) and integrate over R+. We obtain an ODE system
for a = (a1(τ), .., aI(τ))T :

Mȧ+Ba = F with

Mij :=

∫ ∞
0

e−(αi+αj) ln2 yγ(y)ydy

Bij := −
∫ ∞

0

e−(αi+αj) ln2 yσ2(2α2
i ln2 y − 1

8
− αi)γ(y)ydy

Fj := − e−
Σ2τ

8

2Σ
√

2πτ

∫ ∞
0

e−(αj+
1

2Σ2τ
) ln2 y(Σ2 − σ2)γ(y)ydy (8)

The ODE will then be discretized by an implicit Euler scheme.

1.2.1 The Case σ Constant

When σ is constant and γ(y) = y−2:

Mij =

√
π

αi + αj
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Bij =

√
πσ2

(αi + αj)
1
2

(
αiαj
αi + αj

+
1

8
)

Fj = −e
−Σ2τ

8 (Σ2 − σ2)

2
√

2αjΣ2τ + 1
(9)

1.2.2 The Non Constant Case

If σ is a function of y and τ , with σ( 1
y , τ) = σ(y, τ) it is best to express it on an

exponential basis as:

σ(x, t) = σ0 +

J∑
1

σj(t)e
−αj ln2 y or σ(x, t) = σ0 +

J∑
1

σj(t)y
j (10)

because then all integrals can be computed analytically.

1.2.3 Another choice for γ

Later on we will change variables to z = e− ln2 y; then in view of the fact that
dz = 2

y e
− ln2 y ln 1

ydy we will need to choose

γ(y) =
2

y2
| ln y| so as to have e− ln2 yyγ(y)dy = e− ln2 y 2

y
| ln y|dy = dz.

Then with σ constant:

Mij =
1

αi + αj

Bij =
σ2

αi + αj
[
1

8
+ αi −

2α2
i

αi + αj
]

Fj = −(Σ2 − σ2)
e−

Σ2τ
8

√
2Σ2τ

2
√
π(1 + 2Σ2ταj)

(11)

The computation of the integrals relies on the following:∫ ∞
0

e−k ln2 yγ(y)ydy = 2

∫ 1

0

zkdz =
2

k + 1∫ ∞
0

e−k ln2 y ln2 1

y
γ(y)ydy = 2

∫ 1

0

zk ln
1

z
dz =

2

(k + 1)2
(12)

1.3 Numerical Tests

The method was thoroughly tested in [4] but since we are concerned with a
minor variation of the original we retested the method for the computation of
a vanilla call of volatility σ =

√
0.9 using Σ =

√
0.5 and I ranging from 5 to 30

(using multi precision arithmetics when I > 20). The maturity is T = 2 and
10 time steps are used to integrate (8); with 20 time steps the precision is not
significantly improved.
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Figure 1 shows that the precision of the method is well within the 3 digits
required by banks. Calls are computed from puts by the put-call parity relation.
The linear system is solved with the SVD module of [7]; however as we shall
see, ill conditioning is such that even SVD fails when I is larger that 20 or so.

2 Finite Element Solution of the Problem in
variable z

Change of Variable

When u satisfies u( 1
y , τ) = 1

yu(y, τ) equation (4) can be studied on the interval

(0, 1) instead of R+. The boundary condition at y = 1 is obtained from the
symmetry condition. Indeed, u( 1

y ) = 1
yu(y) implies that 2∂yu = u at y = 1.

Let z = e− ln2 y, i.e. y = e−
√
− ln z.

2.1 The Partial Differential Equation in z

Written in z for u = vσ − vΣ the Black-Scholes equation is :∀z ∈ (0, 1),

∂τu− 2σ2z2 ln
1

z
∂zzu+ σ2z(1 +

√
ln

1

z
− 2 ln

1

z
)∂zu = f, u(z, 0) = 0. (13)

with f = σ2−Σ2

Σ2 ∂τvΣ. At z = 0 no boundary condition is needed; at z = 1,
since

∂yu = 2z

√
ln

1

z
e
√
− ln z∂zu

we must have, for some c, ∂zu ∼ c/
√

ln 1
z , giving ∂zu ∼ u/(4

√
ln 1

z ) at z = 1.

Calling the conormal derivative ∂νu := 2σ2z2 ln 1
z∂zu we obtain:

∂νu ∼ u
σ2

2

√
ln

1

z
at z = 1 ⇒ ∂νu(1, τ) = 0.

Therefore u is given by

∂τu− 2∂z(σ
2z2 ln

1

z
∂zu) + βz∂zu = f, u(z, 0) = 0, ∂νu(1) = 0

with β = 2z ln
1

z
∂zσ

2 + σ2(

√
ln

1

z
− 1 + 2 ln

1

z
) (14)

This problem is well posed in variational form : find u ∈ V such that ∀ŵ ∈ V :∫ 1

0

[ŵ∂τu+ 2σ2z2 ln
1

z
∂zu∂zŵ + βzŵ∂zu]dz =

∫ 1

0

fŵdz (15)

where
V = {v ∈ L2(0, 1) : z

√
− ln z∂zv ∈ L2(0, 1)}.

However the Hilbert structure of V remains to be proved.
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Figure 1: Top figure: errors with I = 10 (difference between the analytical
Black-Scholes formula and this method) in the interval y ∈ (0.5, 1.5) is shown
to be below the 0.1% accepted standard. Bottom figure: The highest curve is
the L1 error versus ten times the time to maturity τ . The lowest curve is the
L1 error at τ = T versus the number of basis functions I.
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2.2 Numerical Solution

We have discretized the problem with the linear finite element method on a
mesh, refined at z = 0 and z = 1 and with an implicit Euler scheme in time.
Using freefem++ the following code implements the method. The source code is
given to show the reader how simple it is to solve even 1D problems (freefem++
was designed primarily for 2 and 3D problems).

real dt=0.02, T=2, sig2=0.09, Sig2=0.25;

mesh Th=square(100,1,[x,y/10]);

fespace Vh(Th,P1,periodic=[[1,x],[3,x]]);

Vh uold=0,u,v;

func alpha=-2*sig2*x^2*log(x);

func beta=sig2*x*(sqrt(-log(x))-1-2*log(x));

func rhs=(sig2-Sig2)*sqrt(x)*exp(-Sig2*t/8-log(x)^2/(2*Sig2*t))

/(2*sqrt(2*Sig2*t*pi));

for(t=dt;t<T;t+=dt){

solve aa(u,v)=

int1d(Th,1)(u*v+dt*alpha*dx(u)*dx(v)+dt*beta*v*dx(u))

-int1d(Th,1)(uold*v + dt*v*rhs) +on(4,u=0);

uold=u;

}

Figure 2 shows the precision obtained by this method. The precision is poor
and the computing time is not small compared to a similar numerical solution
of the Black-Scholes PDE written in y.

3 A Basis based on Legendre Polynomials

As a function of z, u√
y can be expanded by Taylor’s formula:

u
√
y

=

I∑
i=0

aiz
i +

C

(I + 1)!
zI+1 (16)

Equivalently we can use Legendre polynomials pi instead of zi

u
√
y

=
∑
i

ai(τ)pi(y) (17)

However due to the exponential behavior of u → 0 near y = 0 we must keep
only those pi which satisfy pi(0) = 0, so i must be an odd integer greater than
0 and less than I.
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Figure 2: The solution obtained with the finite element program in z with 100
elements and 100 time steps (the curve that goes slightly below zero). For com-
parison vσ computed with Black-Scholes formula is also plotted. The precision
is poor. Here σ = 0.3, Σ = 0.5, T = 2.

3.1 The New Basis

With (17), to obtain a mass matrix
∫ 1

0
pipjdz from the first term of the PDE it

suffices to multiply (4) by pj dz√
y and integrate. Hence

∑
i∈I

ȧi

∫ 1

0

pipjdz =
∑
i∈I

ai

∫ 1

0

σ2y2

2
(∂yy(pi

√
y))pj

dz
√
y

+

∫ 1

0

fpj
dz
√
y

Knowing that

pj =
∑
k

qjk
wk
√
y

(18)

and that dz = 2
y e
− ln2 y ln 1

ydy we obtain,

ȧj
2j + 1

=
∑
i,k,m

aiqimqjk

∫ 1

0

σ2y2

2
∂yyw

m w
k

√
y

dz
√
y

+
∑
k

qjk

∫ 1

0

f
wk
√
y

dz
√
y

=
∑
i,k,m

aiqimqjk

∫ 1

0

σ2∂yyw
mwke− ln2 y ln

1

y
dy

+
∑
k

qjk

∫ 1

0

2fwk

y2
e− ln2 y ln

1

y
dy, 1 ≤ j ≤ I (19)
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because
∫ 1

0
pipj = 1/(2j + 1). This is a system of the type

M ȧ+B a = F

Remark 2 Because M is diagonal we can use an explicit Euler scheme for time
discretization and assert explicitly the stability condition for δτ . Numerical tests
show that it is not a restrictive condition; hence the method becomes very fast.

3.2 Computation of Q, B and F

One of the definitions of pn is

(n+ 1)pn+1(z) = (2n+ 1)zpn(z)− npn−1(z), starting at p0 = 1, p1 = z.

Hence, starting with q0,0 = 1, q1,0 = 0, q1,1 = 1, and with the convention that
qn,m = 0 if m > n or m < 0 we obtain:

(n+ 1)qn+1,j = (2n+ 1)qn,j−1 − nqn−1,j , j = 0, ..n+ 1; n = 1, 2..(20)

By choosing the weight γ as in section 1.2.3 we obtain the right formulae for
M , so the relations between B,F , a(τ) and B,F, a(τ) are

M = QMQT , B = QBQT , F = QF, a = QTa (21)

3.3 Numerical Results

Freefem++ is a public domain package to solve partial differential equations (see
www.freefem.org); it uses a language close to the mathematical formulation
and it allows to manipulate matrices. The following freefem++ script should
be self explanatory:

real t, dt=0.002, T=2, sig2=0.1, Sig2=0.25;

int n2=26, id=2, n=n2/id;

real [int,int] Q2(n2,n2), B(n,n), C(n,n), Q(n,n), QT(n,n);

real [int] a(n),b(n),f(n);

complex[int] vp(n);

complex[int,int] VP(n,n);

// compute Q

Q2(0,0)=1;Q2(1,0)=0; Q2(1,1)=1;

for(int m=1;m<n2-1;m++)

for(int j=0;j<m+2;j++)

Q2(m+1,j) = ((2*m+1)*((j>0)?Q2(m,j-1):0.)

-m*((m>0 && j<m)?Q2(m-1,j):0.))/(m+1);

// Compute B

for(int m=0;m<n2;m+=id)

for(int k=0;k<n2;k+=id){
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B(k/id,m/id) = -sig2*2*((m+1)/(m+k+3.0))^2-(m+1.125)/(m+k+3.0);

Q(m/id,k/id) =Q2(m,k);

QT(m/id,k/id)=Q2(k,m);

}

dgeev(B,vp,VP); // eigen solver before multiplication by Q

C=Q*B; B=C*QT;

dgeev(B,vp,VP); // eigen solver after multiplication by Q

This program computes the eigenvalues of B given by (11) and those of the
matrix which appears in (19), namely QBTQT .

Table 1: Eigen values of B and QBTQT for n = 12

i Reλi Imλi
0 0.0203252 0.127462
1 0.0203252 -0.127462
2 0.00381098 0.00349785
3 0.00381098 -0.00349785
4 0.00013659 0
5 2.18895e-05 0
6 4.95924e-07 0
7 3.06291e-08 0
8 4.38722e-10 0
9 1.13289e-11 0
10 7.37279e-14 0
11 4.86674e-16 0

i Reλi Imλi
0 0.627759 0.124794
1 0.627759 -0.124794
2 0.33515 0.0775545
3 0.33515 -0.0775545
4 0.159081 0.0463727
5 0.159081 -0.0463727
6 0.0603271 0.0275838
7 0.0603271 -0.0275838
8 0.0195863 0.00830954
9 0.0195863 -0.00830954
10 0.00291485 0
11 0.000395566 0

Table 1 shows that the condition number of the matrix of the linear system
has been reduced by a factor of 1012 by switching from polynomials in zn to
Legendre polynomials pn. The new linear system is still not ideally conditioned
and for I > 30 the eigenvalue solver of Lapack fails, but such I is unnecessarily
too large anyway. However this is a known problem for spectral solvers as well,
for which solutions have been found [3],[8].

Table 2: First 6 coefficients on the basis versus n at T = 2

n a1 a2 a3 a4 a5 a6

4 -2.699e-2 -1.376e-2 -2.434e-3 -3.732e-4
6 -2.707e-2 -1.384e-2 -2.495e-3 -3.782e-4 -1.770e-4 -7.748e-05
8 -2.710e-2 -1.386e-2 -2.515e-3 -3.959e-4 -1.917e-4 -7.287e-05
12 -2.711e-2 -1.387e-2 -2.529e-3 -4.078e-4 -2.012e-4 -8.110e-05
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Table 3: Condition numbers of B and QBQT versus n

n maxi ||λi(B)||
mini ||λi(B)||

maxi ||λi(QBQT )||
mini ||λi(QBQT )||

4 6.69e02 6.98
6 4.50e05 7.45
8 3.51e08 3.12e02
12 2.70e14 1.60e03

Conclusion

By using the variable z we have shown here that the reduced order model pro-
posed in [4] is a spectral method and that the POD algorithm amounts to using
the Legendre polynomials instead of the canonical basis attached to {zi}i. How-
ever using variable z has its own difficulties as demonstrated by the direct FEM
solution of the Black-Scholes equation in z. So we have translated this informa-
tion back into the moneyness variable y by a matrix multiplication similar to
a preconditioning, which makes the mass matrix diagonal; coupled with an ex-
plicit Euler time scheme the method requires no linear solver and consequently
it is extremely fast. This analysis explains also why so few basis functions are
needed and why the matrices in the y-formulation are so ill conditioned (Hilbert

matrices
∫ 1

0
zizj).

The analysis requires a symmetry condition about y = 1. In absence of such
property one needs to work with all the wi, i even and odd. This will be the
topic of a forthcoming paper.
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