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Abstract: The aim of this paper is to illustrate a method for identifying macroscopic anatomical differences
among the brains of different populations of subjects. The method involves spatially normalizing the
structural MR images of a number of subjects so that they all conform to the same stereotactic space.
Multivariate statistics are then applied to the parameters describing the estimated nonlinear deformations
that ensue. To illustrate the method, we compared the gross morphometry of male and female subjects. We
also assessed brain asymmetry, the effect of handedness, and interactions among these effects. Hum. Brain
Mapping 6:348–357, 1998. r 1998Wiley-Liss,Inc.

Key words: morphometrics; anatomy; spatial normalization; multivariate analysis

r r

INTRODUCTION

In this paper we introduce a new technique to
characterize differences among structural or anatomi-
cal brain images. The anatomical differences between
any two brains can be expressed at a microscopic scale
(e.g., differences in cytoarchitectonics or myeloarchitec-
tonics), at a mesoscopic scale (e.g., cortical dysplasia),
or at a macroscopic level (e.g., ventricular enlargement
or abnormal temporal lobe asymmetry). From the
perspective of neuroimaging, differences at a meso-
scopic and macroscopic level are amenable to measure-
ment. We recently developed a technique that looks for
differences at a mesoscopic scale (i.e., several millime-
ters), called voxel-based morphometry, and we demon-
strated it in relation to regionally specific abnormali-

ties in grey matter in schizophrenia [Wright et al.,
1995]. This approach uses spatially normalized, seg-
mented images in conjunction with statistical paramet-
ric mapping to provide inferences about differences in
the local density of various tissue compartments (e.g.,
grey matter or white matter). Voxel-based morphom-
etry throws away macroscopic or global differences in
anatomy at the spatial normalization step. Here we
describe a technique that characterizes these global
differences in macroscopic anatomy that complements
voxel-based morphometry, allowing one to examine
differences at both mesoscopic and macroscopic scales.

By analogy with voxel-based morphometry, we called
this new approach deformation-based morphometry. Both
can be seen as developments in the growing field of
computational neuroanatomy. Deformation-based mor-
phometry is a characterization of the differences in the
vector fields that describe global or gross differences in
brain shape. These vector fields are the deformation
fields used to effect nonlinear variants of spatial
normalization, when one of the images is a template
that conforms to some standard anatomical space. In
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what follows we take the deformation fields that map a
series of images onto the same template, and then
compare them to see if there are any systematic
differences. Because the deformation fields are multi-
variate, we employ standard multivariate statistical
techniques to estimate the nature of the differences and
to make inferences about them. The endpoint of
deformation-based morphometry is a P value pertain-
ing to the significance of the effect and one or more
canonical vectors, or deformations, that characterize
their nature. These results are obtained using multivar-
iate analysis of covariance (ManCova) and canonical
variates analysis (CVA), respectively.

The importance of this technique is that it is com-
pletely automated and therefore completely reproduc-
ible. Its validity is established in terms of the estima-
tion of the deformation fields and the templates used
in the analysis. Also, there is no implicit bias in terms
of which anatomical differences might be identified.

Studies of brain morphometry have been carried out
by many researchers on a number of different popula-
tions, including patients with schizophrenia, autism,
dyslexia, and Turner’s syndrome. In relation to schizo-
phrenia, much of the work has focused on the dimen-
sions of the temporal lobes [Crow, 1990; Bartzokis et
al., 1996; Jacobsen et al., 1996], hippocampal volumes
[Suddath et al., 1990; Altshuler et al., 1990], ventricle
volumes [Suddath et al., 1990; Blackwood et al., 1991;
Lieberman et al., 1992], anterior cingulate and frontal
lobes [Noga et al., 1995; Nopoulos et al., 1995], basal
ganglia [Frazier et al., 1996], and whole brain volumes.
Other areas of research include sexual dimorphism of
schizophrenic brains [Nasrallah et al., 1990] and the
degree of asymmetry [Crow, 1990]. Abnormal cerebel-
lar morphology has been found in autism [Ciesielski
and Knight, 1994], along with differences in the mor-
phology of the forebrain, especially the anterior ven-
tricular horns, lateral ventricles, and right ventricular
nucleus [Gaffney et al., 1989]. Autistic brains have also
been found to be more symmetric than control brains
[Tsai et al., 1983]. Differences found in Turner’s syn-
drome include smaller volumes of a number of brain
structures [Murphy et al., 1993], and different regional
distributions of grey and white matter in both right
and left parietal regions [Reiss et al., 1995].

Often, the morphometric measurements used in
these studies have been obtained from brain regions
that can be clearly defined, resulting in a wealth of
findings pertaining to these particular measurements.
These measures are typically volumes of unambiguous
structures such as the hippocampi or ventricles. How-
ever, there are a number of morphometric features that
may be rather more difficult to quantify by inspection,

meaning that many structural differences may be
overlooked. In summary, the study of macroscopic
anatomical dimorphism is an important field that has
provided a number of intriguing insights into the
pathogenesis or neuro-developmental aspects of sev-
eral neuropsychiatric disorders. However, it is the case
that most studies to date have focused on anatomical
‘‘metrics’’ that are easy to measure. These may, or may
not, be germane to the pathophysiology under investi-
gation. The importance of the approach described here
is that it is not biased in any way to one particular
structure or tissue, and gives an evenhanded and
comprehensive assessment of anatomical differences
throughout the brain.

Friston et al. [1995b] observed that, ‘‘The topogra-
phy of an image can be characterized in terms of the
coefficients corresponding to the spatial basis func-
tions. This simple list of coefficients, taken in conjunc-
tion with the reference image, is a complete specifica-
tion of the original image (down to the resolution
imposed by the basis functions). The importance of
this observation is that anatomical topography can be
characterized by a multivariate measure (the coefficients)
and subject to conventional multivariate statistics.’’ What
follows is an implementation of that basic idea.

In order to demonstrate the technique, we chose to
study dimorphism in relation to handedness and sex.
This should be seen as a vehicle to explain and
illustrate how to do these analyses. The details of the
statistical analysis are presented in Appendix A for the
interested reader, and represent standard methods that
have already been applied to functional imaging data
[Friston et al., 1995a].

METHODS

High-resolution structural T1 MR images were ac-
quired from 61 normal, healthy volunteers. These were
all acquired on the same 2 Tesla Siemens Magnetom
Vision scanner, using an MPRAGE sequence. The
resolution of the images was 1 3 1 3 1.5 mm. The data
consisted of 15 female right-handed subjects, 5 female
left-handed subjects, 30 male right-handed subjects,
and 11 male left-handed subjects, all between ages
20–37. The scans were all acquired as part of ongoing
functional imaging projects within the department,
and all subjects had no neurological or psychiatric
history.

The images were spatially normalized by a least-
squares match to a template image. This template
consisted of an average of 12 12-parameter affine-
registered T1 MR images of the head, and was ren-
dered symmetric (so that it could be used to examine
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brain asymmetry) by averaging with itself reflected across
the saggital midplane. The MRI sequence used to generate
the images, constituting the template, was identical to
that used for all the other images, thus ensuring that
more accurate registrations could be achieved.

The first step of the normalization was to determine
the optimum 12-parameter affine transformation [Ash-
burner et al., 1997]. Initially, the registration was
performed by matching the whole of the head (includ-
ing the scalp) to the template. Following this, the
registration proceeded by only matching the brains to-
gether, by appropriate weighting of the template voxels
(Fig. 1). This is a completely automated procedure (that
does not require ‘‘scalp editing’’) that discounts the
confounding effects of skull and scalp differences.

The affine registration was followed by estimating
nonlinear deformations, whereby the deformations
were defined by a linear combination of three-
dimensional discrete cosine transform (DCT) basis
functions [Ashburner and Friston, 1998; Friston et al.,
1995b]. Each of the deformation fields was described
by 1,176 parameters, which represented the coefficients
of the deformations in three orthogonal directions. The
matching involved simultaneously minimizing the mem-
brane energies of the deformation fields and the residual
squared difference between the images and template, as
described previously. The mean of the spatially normal-
ized images is shown for each group in Figure 2. It can be
seen that in terms of gross anatomy, following normal-
ization, they are virtually indistinguishable.

Each set of spatial normalization parameters (affine
and nonlinear) encodes a deformation field relating to
the position, size, and shape of the brain. For the
analysis presented here, we used only the information

relating to the shapes of the brains, by removing the
effects of size and position (see Appendix B).

Following this, a matrix A0 was generated, where
each row contained the coefficients of the nonlinear
basis functions, describing the difference in shape
between the template and each image. For the multivar-
iate analysis that followed, it was necessary to reduce
the number of these coefficients relative to the number
of images. Principal component analysis was used to
compact this information, such that about 96% of the
variance of the nonlinear deformations was repre-
sented by 20 parameters for each image. This dimen-
sion reduction used singular value decomposition to
decompose matrix A0 into unitary matrixes U0 and V0,
and diagonal matrix S0, such that A0 5 U0S0V0

T. Matrix
S0 was reduced to a smaller diagonal matrix S, by eliminat-
ing the rows and columns containing the least important
components. The same columns were removed from U0 to
produce the matrix U. The reduced data (A of dimen-
sion m 3 n) was constructed with A 5 US.

Multivariate analysis of covariance (ManCova) was
used to make inferences about the effects of interest
(i.e., to provide P values). In the simplest case of
comparing two groups, the ManCova becomes the
special case of Hotelling’s T2 test. ManCova does not
simply tell one what the difference is. To characterize
these differences one usually uses canonical variates
analysis (CVA) based upon the parameter estimates
from ManCova. CVA is a device that finds the linear
combination of the dependent variables (in this case
the deformations) that is maximally correlated with
the explanatory variables (e.g., male vs. female). In the
simple case of one categorical explanatory variable
(e.g., sex), this will be the deformation field that best
discriminates between males and females. Note that
this is not the same as simply subtracting the deforma-
tion fields of two groups. This is because 1) the
ManCova includes the effects of confounds that are
removed, and 2) some aspects of the dimorphic defor-
mations may be less reliable than others (CVA gives
deformations that explicitly discount error in relation
to predicted differences). The canonical deformations
can either be displayed directly as deformation fields,
or can be applied to some image to ‘‘caricature’’ the
effect detected. In this paper, we combine both in order
to illustrate the deformations more clearly.

RESULTS

Tests for significant differences between groups of
subjects were performed using a ManCova (see Appen-
dix A) on the deformation parameters. A number of
tests were performed, including tests relating to the

Figure 1.
The template (left) and weighting image (right) used by the
registration. Note that the images have been smoothed using an
8-mm full-width at half-maximum isotropic Gaussian kernel in
order to facilitate the registration.
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handedness of the subjects, sexual dimorphism, look-
ing at brain asymmetry, and interactions among these
factors. A full report of these results will be presented
elsewhere. Here we concentrate on a few of the more
illuminating analyses.

Handedness, sex, and the interaction
between them

A ManCova testing for the effects of both handed-
ness and sex simultaneously suggested extremely sig-

Figure 2.
The mean of the spatially normalized images for each group: left-handed females (above left), right-handed
females (above right), left-handed males (below left) and right-handed males (below right).
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nificant effects (P 5 2.1 3 1027). Because there were
two effects of interest, CVA (see Appendix A) could be
used to generate a scatter-plot representing the opti-
mum separation of the groups (Fig. 3) in terms of the
two corresponding canonical variates. It can be seen
that the first canonical variate is mainly sensitive to the
differences between men and women, whereas the
second discriminates between handedness.

The effects of sex and handedness were then tested
individually, both showing significant differences
(P 5 0.00014 and P 5 0.00020, respectively). The test
for sex differences used handedness as a confound,
and that for handedness used sex as a confound. A
further test failed to show any interaction between
handedness and sex (P 5 0.90). The differences be-
tween the groups were characterized using CVA; the
results are shown in Figure 4. These can be compared
to the difference between brain shapes (after removing
confounding effects), as shown in Figure 5. We will
comment on the differences between the two sorts of
characterization (CVA and those based directly on the
parameter estimates) below.

The effect of sex can be most clearly seen in the
saggital view, and suggests that men have a more
protruding occipital pole, whereas women have more
prominent frontal poles. The effect of handedness
involves more asymmetric differences affecting pre-
dominantly the right frontal lobe (transverse section,
Fig. 4, center).

Brain asymmetry

Because the template used by the spatial normaliza-
tion was symmetrical, it was possible to look at
left/right brain asymmetry. The coefficients of the DCT
can be divided into those that account for nonlinear
deformations that are symmetric, and those that relate
to antisymmetric deformations. Very significant brain
asymmetries were detected (P , 0.001) by testing that
the coefficients of the antisymmetric warps differed
from zero. Geschwind and Galaburda [1987] discussed
many of the asymmetries found by a number of
researchers. These include the fact that the left occipital
lobe is broader and longer than that on the right, which
is confirmed in Figure 5. However, because of the large
amount of variability in the occipital lobes, this is not a
feature of brain asymmetry that is strongly character-
ized by CVA (see Fig. 4). Another asymmetry (that was
not really confirmed in Geschwind and Galaburda
[1987]) is that the right frontal lobe is usually larger
than that on the left. However, the results we obtained
contradict this finding, in that the left frontal lobe
appeared to be the larger of the two. From Figure 5 we
see that the magnitude of the difference is relatively
small, but it is still a feature that is strongly character-
ized by CVA. Differences in asymmetry between males
and females and between left- and right-handed sub-
jects were both found to be significant (P 5 0.026 and
P 5 0.0076, respectively), and will be presented elsewhere.

In short, reliable features of asymmetry and dimor-
phism may not necessarily be the biggest or most
obvious. Furthermore, the approach presented here
gives estimates of dimorphism that explicitly discount
differences due to other factors, in this instance, sex
and handedness.

DISCUSSION

In this paper we introduce deformation-based mor-
phometry. This technique allows one to characterize
and make inferences about the differences in macro-
scopic anatomy among structural brain images, and
can be seen as the complement to voxel-based mor-
phometry. The latter deals with residual, local differ-
ences in tissue compartment composition once the
macroscopic differences have been removed. In brief,
the parameters describing the mapping of the images
to some common template are reduced using singular
value decomposition (SVD), and are then subjected to
ManCova to provide parameter estimates and statisti-
cal inferences. CVA can then be employed to give
deformations that best capture the effect one is inter-
ested in.

Figure 3.
Separation of subjects using canonical variates analysis. Right-
handed females (solid circles), left-handed females (solid squares),
right-handed males (open circles), and left-handed males (open
squares).
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Figure 4.
Nonlinear warps that caricature a male brain (above), a right-
handed brain (center), and natural brain asymmetry (below).
These have been characterized by canonical variate analysis. The
images of grey matter show the caricature of the deformations.
Superimposed on this is a contour from the undeformed image.
Arrows show the direction of the nonlinear warps characterized
by CVA (from undeformed to deformed). Deformations have been
arbitrarily scaled for better visualization. These are not the mean
differences between brain shapes, but rather the differences that

most clearly distinguish them. In its most general form, CVA
produces a set of vectors that best partition the data according to
the design matrix. If there are multiple effects of interest, then
there is no simple relationship between these effects and the
canonical variates, but with only one factor of interest (as in these
examples), the canonical variates can be directly related to the
factor. In the transverse and coronal sections, the left side of the
brain is at left.
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We anticipate that the power of this approach will be
realized when several explanatory variables are consid-
ered together in multifactorial designs. In that case
there will be a series of canonical deformations and
compounds of explanatory variables that fully charac-

terize the nature of the differences. An intriguing
example of this approach would be to examine the
effect of being schizophrenic, along with age and the
interaction between these factors. This interaction may
point to a putative degenerative process in schizophre-

Figure 5.
The deformation required to map from a female to male brain
(above), left-handed to right-handed brain (center), and antisym-
metric deformations from a symmetric template to an asymmetric
brain (below), all multiplied by a factor of 5. The deformations

were computed after first removing the effects of confounds, and
are a direct characterization of the parameter estimates without
referring to the errors or reliability of the differences (cf. CVA).
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nia that eschews the necessity to acquire longitudinal
data (which is very difficult to do). An interaction here
would imply that schizophrenic anatomy changes
with time at a different rate from that predicted by
normal age-related changes.

One important aspect of deformation-based mor-
phometry is that the entire brain is examined in a
balanced way. This may be important in the sense that
correlated changes in morphology between anatomi-
cally connected but distant brain regions will be
evident in a way that would be missed by just looking
at one easily identified structure. In terms of character-
izing the effects, we have used CVA and the parameter
estimates directly (i.e., differences having adjusted for
confounds). The latter approach is a special case, due
to having just one effect of interest, i.e., of using the
eigenvectors of the fitted effects. This is an alternative
to CVA which uses the generalized eigenvectors of the
fitted effects and error. Both are useful characteriza-
tions and can be used to complement each other: the
simple eigenvectors show which warps are the biggest,
whereas the canonical vectors give effects that are
more reliable.

The current study has some features in common
with that of Bookstein [1997]. Both used multivariate
statistics to differentiate between the brain shapes of
different populations. The measure of shape used by
the two studies was also similar. However, the meth-
ods differ principally in that the current approach
utilizes the more general statistical method of Man-
Cova, rather than the special case of Hotelling’s T2 test.
In addition, the estimates of shape were based upon
the whole brain, rather than on a two-dimensional
section through the corpus callosum, and were identi-
fied automatically rather than by reliance upon manual
landmark identification.

There are many features of deformation fields that
could be used to characterize differences in brain
shape, and so could be included in such tests. In
principle, the Jacobians of the transformations (a ma-
trix field relating to the spatial derivatives of the
transformation) should be more reliable indicators of
brain shape than absolute deformations (since abso-
lute deformations need to be quantified relative to
some arbitrary reference position). One simple feature
of a Jacobian that could be considered is the determi-
nant, which directly encodes the relative volume of a
brain region. With more sophisticated Bayesian image
registration methods, more control is exerted over the
nature of the distributions from which the parameters
are drawn. The parameter estimates may no longer be
normally distributed, so simple tests based upon
assumptions of normality would not be appropriate. It

is envisaged that future work on morphometry should
develop in concurrence with the methods used for
estimating the deformations. The parameter distribu-
tions imposed upon the deformations by the registra-
tion method could be used in morphometry studies.
Similarly, knowledge of the variability of brain shapes
obtained from morphometry could be used as a priori
information for Bayesian image registration methods.
Both fields would clearly benefit by having a compact
and concise representation of the anatomical variabil-
ity of brains.

Cao and Worsley [1997] and Cao et al. [1997] also
described a multivariate approach to morphometry.
This approach belongs to the voxel-based morphom-
etry class, in that the multivariate inferences are about
regionally specific differences (therein producing statis-
tical parametric map (SPM)) and address things like
displacement of the cortical surface from some normal
position. In this instance, the multivariate nature of the
analyses pertains to the vectorial displacements at
each voxel, and not to the vector-fields that subsume
all voxels. Approaches such as this and the one
described in our study speak to an exciting and
progressive refinement of computational neuroanatomy
in imaging neuroscience.
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APPENDIX A

Multivariate analysis of covariance
and canonical variates analysis

The analysis may be confounded by a number of
possible effects. For the analysis described here, the
confounds are modeled by an m 3 g design matrix G.
Each column of G can be a vector of covariates, or
alternatively can be arranged in blocks for group-
specific estimation. The mean is removed from the
data by including a constant column in G. Any vari-
ance in the data (m 3 n matrix A) that could be
attributed to the confounds is removed by:

Aa 5 A 2 G(GTG)21GTA.

Similarly, the effects of interest are modeled by an m 3
c design matrix C. The columns in this design matrix
are orthogonalized with respect to matrix G:

Ca 5 C 2 G(GTG)21GTC.

The ManCova involves assessing how the predictabil-
ity of the observed deformation parameters change
when the effects of interest are discounted. This in-
volves the distributions of the residuals that are as-
sumed to be multinormal. The statistic is related to the
determinants of the covariance matrices describing
these distributions. In practice, the residual sum of
squares and products (SSP) matrix, (W0), is compared
to the SSP matrix of the fitted effects (B0). These
matrixes are obtained by:

T 5 Ca((Ca
TCa)21Ca

TAa)

B0 5 TTT

W0 5 (Aa 2 T)T(Aa 2 T).

The statistic is called Wilk’s lambda (L), and is based
upon the ratios of the determinants (see Krzanowski
[1988] for a more detailed explanation):

L 5
0W0 0

0B0 1 W0 0
.

This statistic is transformed to a x2 statistic (with nc
degrees of freedom under the null hypothesis) using
the approximation of Bartlett:

x2 < ((n 2 c 1 1)/2 2 (m 2 c 2 g)) loge(L).

Finally, the cumulative x2 distribution function is used
to make inferences about whether the null hypothesis
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(that there is no difference between the distributions)
can be rejected.

Canonical variates analysis (CVA) can be used to
characterize any effects of interest. The vectors that
best discriminate between the groups are obtained
from the c eigenvectors of B0 (e.g., differences in Fig. 5)
or W0

21B0 (i.e., the canonical vectors e in Fig. 4) that
have nonzero eigenvalues. The corresponding canoni-
cal variates are given by Aae.

APPENDIX B

Partitioning the deformation fields into positional
size, and shape components

The deformation fields are defined by both nonlin-
ear and affine components. In order to proceed, it is
necessary to decompose the transformation into com-
ponents relating to position and size (uninteresting
components), and shape (the components that we are
interested in). In order to effect this decomposition,
each deformation field was reconstructed from its para-
meters. Each field provides a mapping from points in
the template to points in the image, allowing standard
landmark-based registration methods to be used to
extract size and positional information. Rather than basing
the registration on a few landmarks, all the elements of
the deformation field corresponding to voxels within
the brain were considered (by weighting with the
image shown in Fig. 1). This involved first determining
the translations by computing centers of mass:

x 5

o
i51

I

xiwi

o
i51

I

wi

y 5

o
i51

I

yiwi

o
i51

I

wi

where xi is the coordinate of the ith voxel of the
template, yi is the location that it maps to, and wi is the
weighting for that element. The rotations were com-
puted from the cross-covariance matrix (C) between
the elements and deformed elements (after removing
the effects of position):

c j,k ~ o
i51

I

wi(xi,j 2 xj)(yi,k 2 yk).

The 3 3 3 matrix C was decomposed using singular
value decomposition to give three matrixes, U, S, and
V (such that C 5 USVT, where U and V are unitary, and
S is a diagonal matrix). The rotation matrix (R) could
then be reconstituted from these matrixes by R 5 UVT.
Finally, moments around the centers were used to
correct for relative size differences (z):

z 5Îo
j51

3

o
i51

I

(xi,j 2 xj)2 wi

o
j51

3

o
i51

I

(yi,j 2 yj)2 wi

.

After removing the effects of translation, rotation, and
scaling from the deformation fields, they were then
reparameterized by the lowest frequency coefficients
of their three-dimensional DCTs.
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