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Abstract

This document is the material support for a talk given for JSIAM
on the current methods for the computation of Radar Cross Sections.
The talk covers more than just computations of RCS and extends
to any problem which involves the numerical solution of Maxwell’s
equations in homogeneous media. The talk is based on a review of the
most recent papers in leading journals and on the author’s experience.
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A precise definition of the radar cross section (RCS) of an object in a sector
of vision Θ is irrelevant for what we wish to do here; it is complex and it
can be found in books like Skolnik[�]. We only need to know that it has the
dimension of a surface and is of the following form:

RCS ≈ 1

� |��|2
∫ �
0

∫
��Θ
|�|2|�|2������

where � is a sphere far from the object which reflects the incident electromag-
netic signal �(�� �), where � is the duration of the signal, �� � the spherical
angles which define a point � on the sphere, |��| the mean electromagnetic
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intensity of the incident signal and Θ the solid angle which specifies the di-
rection of interest for the reflected signal (could be the whole space or a cone
in the direction of the listener).
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Figure 1: The schematics of RCD.
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For detection of airplanes and missiles of course one needs to know what is
the scattered (i.e. reflected ) signal when the object is lit by a radar signal.
These radar signals are usually made of a long pulse containing a somewhat
monochromatic wave. The frequency of the waves varies widely, there is a
race towards high frequencies and there is also much classified research for ob-
vious reasons. There exists advanced coatings which are electromagnetically
absorbing materials but we will not touch this difficult and also classified
subject. So we are dealing with an incident wave coming from infinity, a per-
fectly reflecting object (usually a perfect conductor) and an infinite medium
around it, typically air because, in case of flying objects, the ground is too
far and can be neglected except for low altitude flights.

� ��������� �����
���

An electromagnetic wave is characterised by an electric field �(�� �) and a
magnetic field 	(�� �). Then in a medium with electromagnetic constants

� � the equations read

�
�� −∇×	 = �

�
�	 +∇× � = 0

∇ · (�	) = �

∇ · (��) = 0
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where � is the current inside the object �̇ of surface � and � the charge
density in �̇. These have to be integrated in R3× (0� � ) with different values
for �� � in air and in the object, but to have a unique solution one must
prescribe the behavior of the solution at infinity, the so called Silver-Muller
condition:

lim
�����

|�|(� − 	 × �√
��

)× � = 0

For perfect conductors one may integrate the equations in (R3\�̇) × (0� � )
only and add boundary conditions on � such as

Figure 2
��� �	����� ���� ���� �� 
�Æ�
!� ����
�� ����� ��� �!���
 ���� ��
 �� ���
���"������� �� � 	����
�� ��!
���� �� ���� �� �� ���� 	�!������!# ���� ���
!�
�� ���� $����� �����

� × � = 0 	 · � = 0 on �

The first obvious difficulty is that there are more equations than there are
variables: the system is overdeternmined. In particular if the divergence
equations are satifies at time zero, then they are also satisfied at later times.
The next problem is the decay in time to zero for a compact initial data:

����������� 	 ��� ��!
���� �� $� %�!!&� �'
������ %��� ��� ��
�
��� ����

������ ���"� ��
 ������! ���
������ �� � ��
 	 � ���� ��
 �� 
��'
� ��� ��"��
(��	)|�=0 %��� ���	��� �
		���# (� 
����� � 	�������!!� �� ���� �� ����� ���
�� �!���
 ���� ��
 �� ���� 	�!������!!� �����%���#
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For notational and algorithmic reasons it is convenient to introduce the elec-
tric and magnetic ��

������

� = �� � = �	


��
�� 	 Note that

∇ · � = 0 �� � constant ⇒ ∇ · �	 = � ∇ · �� = 0

� 
���
�� �����

��� 
� ��� 
� �
���

Transverse magnetic and transverse electric solutions are by definition of the
form

	 =



	�
	�
0


 � =




0
0
��


 ← TM TE → � =



��
��
0


 	 =




0
0
	�




If the initial and boundary conditions are in one of the above form and if the
geometry is cylindrical then such solutions are possible. They are essentially
two dimension as seen by eliminitation of one of the variable

��� ��	�	���	
� 
� � �
� �� 	� 
� �
��

�
��	 +∇× (
1

�
∇×	) = 0

��� �
�
���
���	� �����

Furthermore special solutions of the form 	�(�� �) = �����(�) are possible
and � is then solution of a )�!���!�* equation:

�2� + ∆� = 0 � = �2��
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When � is the plane � · � ≥ 0 and with a monochromatic incident wave
�� = ������ |�| = � there is an analytical solution

� = ����� − ���̄�� �̄ = � − 2(� · �)�

These are interpreted as Descartes’ geometrical construction for the reflected
signal because it is symmetrical to the incident wave with respect to the
normal of the plane.

����� ��������

When � is a cylinder and the incident wave has TM or TE polarization then
there is an analytical solution to the Maxwell equations in terms of special
functions ( Legendre, Bessel and Henkel’s):

�	 = −
�∑

=0

�

(2� + 1)

�
(��)

�
(��)
�
(�|�|)�
( � · �

|�||�|)

����� ������

When � is a sphere there is also a semi-analytical solution. Furthermore
whatever the boundary conditions a Fourier expansion of solution is known
outside the cylinder / sphere.

� ������	
��� ��� � !�
��� "��
�

At high frequencies it is reasonable to assume that the incident wave “sees”
� almost as if it was its tangent plane. With such an approximation one
may assume that Descartes’ law of reflections are true and then construct
the reflected signal by a purely geometrical construction with ray going from
the source in all directions onto the object and reflected by a symmetry with
respect to the normal of �. This explains why stealth airplanes tend to
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privilege flat surfaces.

n

k

_

k

One may go one step further in precision with 	������! �	����.
We will see later that the solution of Helmholtz’ equation satisfies

�(�) = ��(�)−
∫
Γ
[

�


�
(�)]

��������

4�|�− �|��(�)

If , in this formula we apply the approximation of geometrical optic to 

�
then its jump across � is

[

�


�
] ≈ 2


�����


�
= 2�� · ������

and so

�(�) = ��(�)−
∫
Γ
�� · ��

�(���+������)

2�|�− �| ��(�)

This is/was the best method to compute the RCS untill computing power
allowed the full solution of Helmholtz equation and now the full time depen-
dent Maxwell system.

# $	�����
�� �% � � &���
�

��� �����	�� �	�� �� ����� �
��	�	
�

Because the Fourier series of the general solution of Maxwell’s equations is
known outside a sphere, it is possible to match the computed solution inside a
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sphere and its first derivative with its outer expansion. this gives a non-local
operator which is complex in general (see Keller[�]) but manageable for

�2� + ∆� = 0 in �3\�̇ �|� = �

This leads to the following numerical method: let the Dirichlet to Neumann
operator beM(�) = −�


�

|� then solve

�2� + ∆� = 0 in �̇\Ω �|Γ = �Γ M(�) +

�


�
|� = 0

��� 
���������� �
��	�	
��

An outgoing monochromatic wave satisfies


�


�
− ��� = 0

therefore this relation can be used in conjuction with Helmholtz equation.

More precise conditions have been proposed such as the following second
order condition:

−1

2


2�


 2
+ ��


�


�
− �2� = 0

on the boundary of a square approximating infinity, together with jump
conditions at the corner of the square:

���� +

�


 +
− 
�


 �
= 0 at corners

���  �!

Perfectly Matching Layers (PML) as proposed by Berenger [�], Bonnet-
Poupeau[�] are perhaps the most favored method these days. In the case of
TM polarization, one add to the computational domain an absorbing layer
(the coefficient !) tuned to absorb only in the direction normal to the outer
boundary:


�	� + 
��� + !2	� = 0


�	� − 
��� + !1	� = 0


��� − 
�	� + 
�	� + !1�� + (!2 − !1)�
1
� = 0


��
2
� + 
�	� + !2�

2
� = 0
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where

�� = �1
� + �2

� �
(
!1

!2

)
=

18

�4
("�− Γ�)3

See Morgan et al[�] for numerical results for instance.

' (���� 
� ��� %�	 � � $� ����

The first and perhaps the best efficient scheme for Maxwell’s system dis-
cretized by the finite difference method was given by Yee[�].


��� = #∇× "	 
� "	 =
1

#
∇× ��

It uses central differences on a staggered grid and a leap from time scheme

E

H

x

x

xx

x x

xx

x

x

�
+1
����� = �
����� − #

Æ�

Æ�
(Æ�	


+1�2
����� − Æ�	


+1�2
����� )

	

+1�2
������1�2 = 	


�1�2
������1�2 −

Æ�

#Æ�
Æ��



������1�2

	

+1�2
����1�2�� = 	


�1�2
����1�2�� +

Æ�

#Æ�
Æ��



����1�2��

where Æ�� Æ� are centered. The scheme is $(Æ�2+Æ�2); 4th order improvement
can be found in [�]

) *��
���
��

To validate a numerical method one can test it against exact solutions. Then
one can plot the Sobolev norm error, phase error, diffusion error, etc versus
mesh, time step at each time. Typical test problems are the cylinder and the
sphere in infinite domain and the rectangle with simple boundary and initial
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conditions. Visual performance can be acquired by comparing with popular
test cases such as the open box problem, the NACA0012 and the CETAF
wing.

+ ,
�
�� ������� ��� ���

"�� # �
��
��	�� ����
� 
� 
���� �

Let % = (��� ��� ��) then


�% +∇ · & (%) = 0 & =




0 ��

�−��

�
0

−��
�

��
�




K. Morgan et al [�] use !����� �!������ plus a 2 step Runge-kutta time
discretization:

%
+1�2 = %
 − Æ�∇ · & (%
)
∫
Ω
(%
+1 −%
)' = −Æ�

∫
Ω
'∇ · & (%
+1�2)

PML is used in a rectangle. a stability condition is necessary of the CFL type
Æ� ≤ (�. The method requires mass lumping to be explicit but an implicit
version with two jacobi iterations per time step to solve the linear system
associated with the mass matrix is sufficient.

"�� $	�	�� ������� ����
�� �	�� ��� %������ �������

To improve the accuracy on the divergence equations, one may use the Ned-
elec Element to approximate

	((�)*�Ω) = {"+ ∈ ,2(Ω)� : ∇× "+ ∈ ,2(Ω)�}
It is

-� = {"+� ∈ 	((�)*�Ω) : "+�|� ∈ P�1 ∀ triangles .}
or also

-� = {"+� ∈ 	((�)*�Ω) : "+� = "/� +"0� × "�}
The degrees of freedom are the integrals on edges

∫
�(+ · 1)

����������� �

||+ − +�||0 + ||∇ × (+ − +�)||0 2 �||+||1��
��
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Elimination of a variable, for instance "�

�
��	 +∇× (
1

�
∇×	) = 0

plus an implicit centered time scheme gives

�

Æ�
	 +∇× 1

�
∇×	 − �∇3 = 4

∇ · (�	) = 5

[	 × �] = 0 [�	 · �] = 5 [3] = 0� [
1

�
∇	 × �] = 4 on Γ

3 = 0 	 × � = 0 on 
Ω

Note that if ∇ · 4 = 1
Æ�
5 then 3 = 0.

����	 ��������
����

Raviart et al[�] used a linear/quadratic conforming element just as for the
Stokes problem. Zou et al[�] use the Nedelec element[�][�] 	� with linear
elements for 3� :

	0((�)*) = {+ ∈ 	((�)*) : + × � = 0 on Γ}
The variational form is: find 	 ∈ 	0((�)*)� 3 ∈ 	1

0 with

/(	��) ≡
∫
Ω

1

�
∇×	 · ∇ ×� 0(	� 6) ≡ −

∫
Ω
�	 · ∇6

/(	��) + 0(�� 3) =
∫
Ω
4 · � − (4 × ���)Γ ∀� ∈ 	0((�)*)

0(	� 6) =
∫
Ω
56 + (5� 6)Γ ∀6 ∈ 	1

0

One has existence and uniqueness and for the discrete problem and $(�)
because the inf-sup conditions for this mixed problem are satisfied.

- ,
�
�� *����� ��� &
�����
����� ����	.
�

��� ���

There are two families of Finite Volume Methods, those which use the trian-
gles as their finite volume and those which use the cells formed by the set of
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triangles which have a common vertex.

I
C C

G1

G2

i i j j

T

G

x

T

G
i

i

j

j

Finite Volumes with piecewise constant approximations on cells for % =
(��� ��� ��) give


�% +∇ · & (%) = 0 & =




0 ��

�−��

�
0

−��
�

��
�




Just as for conservation laws in fluid, the finite volume method gives

/)�/(��)
�%� +
∑
1�2�3

&̄ (%)��� = 0

It can be integrated with Godunov scheme:

7�� = & �(%̄)���� 
�%̄ + 
	(7��%̄) = 0� if � 2 ��� %̄(0) = %� else = %�

where &̄ (%) = & (%̄).

Second order flux correction and/or discontinuous Galerkin of any degree
are also feasible. An implementation by Cioni et al [�] and Remaki[�][�] is
as follows:

• Two step R-K, 8&, 2 193 (classical FVM = 0.75, Yee = 19
√

2)

• � 0 with second order correction is about same precision as order 1 yet
twice as fast, but somewhat more diffusive.

• Alternatively Leap-Frog %
+1−%
 = Æ�& (%
+1�2) preserves E = 1
2
(
�2+

�	2). For Æ� 2 (� the scheme is ,2 stable. Von Neumann stability
cond is 2×bigger than Yee’s (Æ� 2 (Æ�) but equal precision requires a
grid 2×finer.
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Using the theory of tensor calculus, Bossavit[�] proposed to use a leap frog
time scheme with a collocation method based on the use of projection oper-
ators from n-forms to m-forms:

�
+1�2 −�
�1�2

Æ�
= A��
 �
+1 −�


Æ�
= B��
+1�2

	
+1�2 =
1

�
Π��


+1�2 �
+1 =
1



Π��




��	 and 1-forms are approximated with one degree of freedom per edge
while B,D and 2-forms have one degree of freedom per face.
Divergence and Energy exactly conserved and the scheme is $(Æ�2 + �2).
The originality of the scheme is that it treats exactly the PDEs and puts the
interpolation operators on the constitutive relations between E and D and
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H and B. However at best it needs inversion of local mass matrices, requires
7K per point and is more dispersive than FVM or order 3 yet less diffusive.
It is unconditionaly ,2 stable but 	1 stability requires a CFL conditions as
usual.
It can also be extended to quadrangles (see also Lala[�]).

�� 1�	���
� �
����

���� )	���� ����
��

If (��� 	�) = ��(��(�)� +�(�))���� then after some time

���� −∇×	 = �̂

���	 +∇× � = 0

∇ · (�	) = �̂

∇ · (��) = 0

It can be reached by �→∞ or least square (Glowinski et al[�])) or augmented
with 
9
� or stabilized. The stabilization is as follows

���� −∇×	 +∇3 = �̂

���	 +∇× � +∇6 = 0

∇ · (�	) = �̂

∇ · (��) = 0
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Fig. 3d solution of Helmholtz’ equation with 1.5 million mesh nodes (from
Heikkola[�]).

���� 
� 
� 
� *����

In the 2d cases (TM or TE) it reduces to a scalar Helmholtz equation

�2��� + ∆� = 0

Any method works but usually produces large ill-conditioned linear system!

���� +
�����, ������� ����
�

When �� � are constant the follwing integral equation is equivalent to Maxwell
system:

		���	 �������� ����� ���� �
� �!"
���� #����$

For all �̂99Γ

∫
Γ�Γ

��������

4�|�− �| [�(�) · �̂(�)− 1

�2
∇Γ�(�) ·∇Γ�̂(�)]��(�)��(�) =

1

�#

∫
Γ
�� · �̂��

		���� %
 ����� ����� ���� �
� �!"
���� #%���$

Alternatively one may use:
for all �̂ 99 Γ

∫
Γ�Γ

[
1
2
J(y)·Ĵ(x)+[n(x)×∇Γ(

e�������

4π|x− y|)×J(y)]·Ĵ(x)]dγ(y)dγ(x) =
∫
Γ

H �·Ĵ×ndγ

or even combine both to give a more stable equation:

		���� ���&���� ����� ���� �
� �!"
���� #����$

8&:� = ;�&:� + (1− ;)
�

�
<&:�
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		���' (�������)
����

in Schwab[�] the discretization is done with the Raviart Thomas element

R� 0(Γ�) = {�� ∈ 	(divΓ�Γ) : +�|� = "/ + ="�� /�� = ∈ C}
for which the degrees of freedom are the edge integrals

∫
� +� × �� 

����������� � +��� ��� ������
�
� ��
 
������� ���'
��!����� ����� ���
��� 
�,������ �� � 	�1�2(
�"Γ�Γ)��!!�	��� ���'
��!����� ���� ��
 � ���	���
���'
��!����� ����#

����������� '
|� − ��| ≤ inf

�����

|� − :�|�
%���� > ≈ 	�1�2(
�"Γ�Γ)###

		���* ����
��+� ���"����

Consider the Helmholtz equation and let >(�) = �����9|�|
∆� + �2� = 0 

�|Γ = 5 )(

 − ���)|� = 0

solved by having �(�) =
∫
Γ '(�)

>(�− �)��(�) for all '̂∫

Γ�Γ
>(�− �)(∇' · ∇'̂ − �2''̂�(�) · �(�))��(�)��(�) =

∫
Γ
5'̂

discretized by � 1 elements and solved by conjugate gradient

?�' = −
∫
Γ


2>


�(�)
�(�)
(�− �)'(�)��(�)

��' =
∫
Γ
>(�− �)'(�)��(�)

��' =
∫
Γ


>(�− �)'(�)��(�)

Recall the Calderon identity 4��?� = 1 + 4(�2
� + (�� − ��)?�) shows that

�� ≈ ?�1
� because the rest is compact.

����������� * # = 8�1��8
�1 �� � 	�����
������� %���

���� =
∫
Γ
'��'� =

∫
Γ�Γ

'�(�)>(�− �)'�(�) 8�� =
∫

Γ
'�'�

in the sense that #�1? has condition number O(1) when � and ! are not
near a resonance mode.
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FMM is an acceleration algorithm which makes the overall integral equation
solver $(� log�) where � is the number of discretization points on the surface
�. TO illustrate the principle of the method we reproduce here the example
from Darve[�][�][�].

To compute +� =
∑�
�=1


�
�����

@ = 1AA� which normally takes �2 operations

one may do the following:

1

�− �
=

1

�− B + B − �
=

1

(�− B)(1 + ���
���

)
=

 ∑
!=0

(� − B)!

(�− B)!+1
+ C((

B − �

�− B
) )

therefore

�∑
�=1

��
�� − ��

=
 ∑
!=0

[
�∑
�=1

(�� − B)!��]
1

(�� − B)!+1
= ��!7!���

Now the operation count is 2< × � + < ×< .
To apply this idea to Maxwell’s integral formulation we need special factor-
ized solutions to Maxwell Harmonic such as (� = �

√
��)

�(�) =
∑
�	1

∑
!�[���+�]

[�!�
��(�))

��(�)
�!� (�� �)

+
��

��
+!� [

� + 1

2� + 1

���1(�))

��(�)
:��1(�� �) +

�

2� + 1

��+1(�))

��(�)
?!�+1(�� �)]]
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Rokhlin[�], Greengard[�], Chew[�], Darve[�] have perfected the method. Here
are some results

Computations with the FMM (courtesy of E.Darve)

�� �������
��

There are 3 families of methods: time methods, frequency FEM methods,
BEM-FMM. FMM is fastest but difficult for non constant materials. Direct
time formulation is most general and can handle any radar pulse but may
be slow to converge. Frequency methods are a good compromise at present.
However more research on preconditioners is needed. More generally authors
unfortunately do not pay attention to the standardization of test cases and
this makes the comparisons difficult. To allow finite difference methods to be
general one needs to use the fictitious domain embedding method. For inverse
scattering the handling of thin layers of composite materials are essential but
we have not covered this aspect in this report

2�%�	�����
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