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Abstract

We investigate the accuracy of mesh adaption for a problem with a
free boundary that arises in finance for the pricing of American options.
The formulation is given; it is discretized by the Finite Element Method
(the connection with Finite Differences is recalled because FEM is not
common in banking) and mesh adaption by the modified metric-Voronoi
approach is presented and tested.

1 Introduction

The Black & Scholes equation is used in finance to price an option on the
market.

Consider an American call option on an asset which is worth S; dollars
at time t.

We want to pay C dollars at time 0 to place an option which will give
us the right to buy the asset at any time 7 € (0,7") for K dollars (the
strike). We are not obliged to exercise our right to buy the asset but after
time T the deal is void. Obviously if the asset is worth more than K at
time T (i.e. if Sp > K) we will exercise it and if it is less we will not.

Furthermore if r is the interest rate of riskless commodities there will
be a profit if S; > e"7C + K. The problem is to find C or more generally
C(z) the price of the call for all z, .

Conversely as an owner we want to give P dollars to have the right to
sell the asset S; at price K at time 7 < T. Obviously we will exercise the
right to sell at T or before if St < K; the profit will be K — S; — Pe'".

The price of the put at later time is denoted by P;. The "no-arbitrage”
hypothesis implies that

C,+Ke " T™Y =p 15, (1)

Furthermore the same no-arbitrage hypothesis tells us that an Ameri-
can Call will cease to exists if for some 7 < T, Cr < S; — K; similarly an
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American Put will cease to exists if for some 7 < T, P, < K — S;. This
leads to the constraints

CtZSt—K7 PtZK—St. (2)

1.1 Notations
So, through out the paper we will denote by

e ¢ the time,

e 1z a variable which is destined to be the price S; of the asset when
it is used in conjunction with ¢;

e S; : the price of the asset follows a stochastic differential equation

dS; = S¢(pudt + odB). 3)
e 1 : average tendency of the price of the asset per dollar
e o : volatility of the asset
e C(z,t) : price of a call option on an asset of value x and at time ¢.
e P(z,t) : price of a put option on an asset of value x and at time ¢.
e u(z,t) : price of an option (put or call) on an asset of value z and ¢.
e 1 : risk free interest rate.

o ¢(z) the value of the option at time 7.

2 The Black and Scholes equation

The computation of u in the model of Black & Scholes involves the solution
of the following parabolic equation with given final data:

ou 1 5 50%u ou . +
_ —_ _— —_— = 4
91 + 57 % 53 +m:ax ru=0 in R"x]0,T][ (4)
This is a consequence of the fact that Cy and P; are given functions of
S: and that the expected value of S; satisfies (4), a well known property

of the stochastic differential equation (3).

2.1 Boundary Conditions

At time T the price of the option is the profit made by realizing the option,

C@.T) = p(a) = (@~ K)* P2, T) = (K — )" (5)

We know also that the model should give 0 < C' < x because the
option must be cheaper than the asset; that gives a boundary condition,
C =0 at x = 0. But because of the singularity at x = 0 of the coefficients
of the PDE, if u is regular near x = 0, (i.e. Ozzu bounded ) the PDE
contains a hidden boundary condition (the limit of the PDE at z = 0):

ou

a—ruzo atz =0 (6)



i.e. if r is constant:

T
r(7,0)dr

u(0,t) = u(0,T)e fr = u(0, T)e’"“*T) ™

which in the case u(0,7) = C(0,T) = 0 gives C(0,t) = 0 for all time.

At infinity the PDE contains also a boundary condition embedded in
the hypothesis that the solution be regular (see Nicolaides[8]). It seems
numerically more appropriate to impose

Jim [u(z, t) — pla)e T =0 (®)

because it is compatible both with the final condition at T" and with
the Put-Call relation (1).
We will impose this condition not at * = +oco but at x = L, a process
which is called ”localization” in numerical finance

u(L,t) = p(L)e" T 9)
However a ”non-reflective” boundary condition would probably be
more efficient.
2.1.1 Change of variable

To remove the singularity at « = 0 the following change of variable is
proposed

u(y,t) = C(e’, 1) (10)
po=p— %02 (11)
T=T-—t (12)

Then the problem becomes

dp 1 ,0% ,0p .
— gt = T
9 3¢ 97 7 3y +rp=0 in Rx]0,T]

u(y,0) = p(e”) (13)
and when R is approximated by | — L, +L[ then (2),(6) imply

w(L,7) = (" = K)e'™, i.e.C(x,T —t) ~ ze" "™ when z >> 1,
u(—=L,7) = @(0)e" (14)

2.2 Existence of solution

It is quite easy to show that (13)14) has a unique solution and deduce
from the previous change of variable that (4) has also a unique solution;
however it is not easy to see if there is a singularity at x = 0 or not, and
this is numerically important.

Notice however that if (4) was solved for R instead of just R the re-
striction to R would be the correct solution because the equation gives
an odd solution in x for odd boundary and initial data and because of this



hidden boundary condition at = 0 which is imbedded in the equation.
Now on this augmented domain (—L, L) x (0,T") Oleinik’s theorem [9] tells
that (4) with data in C* at t = T' and smooth Dirichlet data at x = +L
has unique solution in L?(0, T, H*(—L, L)). Therefore

Proposition Equation (4) on (0,L) x (0,T) with (7),(9) and final
data in C* has a unique solution in L*(0,T, H*(0,L)).

Unfortunately the final data (5) have the C° regularity only; but it is
well known that diffusion has a regularizing effect so that at ¢ < T the
solution is regular. Although this is only a heuristic argument it gives
a good indication that ug, is regular at x = 0 at all time. This is an
important information because then there is no reason to use the change
of variable numerically as it concentrates the grid points around z = 0
unnecessarily.

Besides, y = €” is a frightening change of variable because y may go be-
yond the range of numbers allowed y the compiler and it is justified only if
the coefficients o, r are constant and perhaps also only for semi-academic
studies.

2.2.1 Stability
Equation (13) multiplied by u and integrated gives

1 9u? u? o' ou . 50° u? 9% o2 9
— 4 — + [ (=)= - 535 T ru” =
Q20T qQ 2 Oy Q Oy 2 qQ 2 0y* 2 Q 20

(15)
The ”energy” E = fQ u? will decay with time if
dp  1d%0?
- - = >0 16
dy 2 dy? tr2 (16)
because (15) gives a negative sign to OF /9.
Remark
A change of variable shows that this hypothesis is not essential.
Let u; = e~ “"u then (13) becomes
Ouy JO0ur o? 9Py
gur 2 =0 17
oy TOM TG T g g T (17)

so r is changed into r + «

Numerically however if (16) is not verified it is a good idea to do
this change of variable because it removes the exponential growth of w,
something which is always difficult to capture because of the ”overflow”
of real numbers when the result of an arithmetic operation is too large.

2.3 Discretization with finite differences

The implicit Euler scheme with centered spatial differences is
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1om m m ™ m
[l =] - o L e - 2u T
rm41 m+1
I’L m-+1 m-+1 r; m
]2h (wjh —u) + ]2 uj’ =0 (18)

It can be applied also to the system written in (z,t¢) by exchanging
the role of m and m + 1 as the scheme must go backward in time .

In the case of (17) the coefficients o and p’ are constant and the
analysis of Von Neumann shows stability if u’ is small enough; if not
upwinding must be applied and uj}; — uj-; replaced by 2(uj}; — uj")
(recall that p’ > 0).

A better scheme, widely used in finance is the Crank-Nicolson scheme
(see [6] and [7]) also known as the theta-scheme with § = 1/2. But for our
purpose of comparison with the finite element method we will use (18) for
clarity, without loss of generality.

2.4 Discretization by FEM

Consider the B&S equation without change of variable but localized on a
finite interval (0, L):

%Jrl 2 237“+ x%—ru—O in (0,0)x]0,T[  (19)
Assume that u(0,t) = 0, u(L,t) and u(z,T) are given, and that
w(L,t) = u(L,T)e T,
Let us discretized in time by an implicit Euler scheme backward in
time
1 m+1 2 28 8Um
5 a2 ox

It is easy to show that for u = u™ this equation in variational form is

_ )+_

—ru™ =0 (20)

L
/(ozuw—i—1 222_22_:_Mx%wd$_/ fwdr YweV (21)
0

for some appropriate a, p and f.
Here we may take for V' the weighted norm Sobolev space

V=Aw: w,:r(%—ij € L*(0,L), w(L)=0} (22)

which is a Hilbert space with the scalar product

<u,v >= L(uv—i—mQa—u@)
T Oz Oz’

It is also straightforward to show that the bilinear form a(u,w) de-
fined on V by the left hand side of the variational equation is coercive
and continuous because o > 0.



Then the Lax-Milgram Lemma tells us that there is one and only one
solution to this problem because the right hand side is continuous.

Notice that it is not necessary to impose a boundary condition at z = 0
because it is embedded in the equation and in the hypothesis * — zu,
square integrable.

Let us discretize the problem by the Galerkin method by taking a finite
dimensional approximation of V:

Vi = {un € uO(O, L) : vh|(zi@i+1) € Pl, vp(L) =0} (23)

where the z; are such that U;(z;, zi+1) = (0, L).
A basis for V}, is the hat functions of all but the first and last z;:

0 if o<z
(:E—xifl)/(mi—xifl) if zi1 <2<z
(Tit1 — @) /(g1 — ) i @ <2 <wip
0 if Tit1 < T
+1

w'(z) = (24)

Knowing that ux(z) = ui_wi(x)—i—uiﬂwi (z) on (i, xi4+1) it is straight-
forward to compute a(up,w’) and get the finite difference formulation as-
sociated with this method. For example with © = 0, the implicit scheme
is

(25)

351 (uify = (14 @)Uz‘ﬂ)(%‘ﬂ — @) +4u - (1+ %)Uz )(@i1 — Tio1)
n T n
+ (- (1+ %)ui—l)(xi —xi_1)]
T () M
6 3(wi+§ —x;) (Tit1 — x4) (xi — 1)
T; —T;—
+uf g ( L) =0

(-’Ei - 1’1—1)2

3 American Options

The model now requires that u(z,7) never becomes larger (or smaller)
than ¢ (z, 7) given. Thus it is a time dependent variational inequality

The problem is,
min{—a —p— === tru; u—9Y}=0 (26)
- H - ; =

3.1 Discretization in time

Applying the implicit Euler scheme leads to

n+1 _un + ,xaun + O'2$E2 82un
5t F%e T 72 a2

min{ —ru”, u" —yt=0 (27)



which, at each time step, is a problem of the type
min{Au" —d,u™ — ¢} =0 (28)

3.1.1 The Brennen-Schwartz algorithm

A projection algorithm would compute

Au"T? =g (29)

and set
ul = max(ul 2 ) (30)

at each grid points y;.
The Brennen-Schwarz algorithm combines this projection algorithm
with a partial solution of the linear system replaced by

Au"T2 = (A— At —d (31)

where A corresponds to one iteration of a Gauss-Seidel relaxation step.

4 Multidimensional Black and Scholes equa-
tion

4.1 General form

When there are d assets, x = (51, S2, ..., S¢) is multidimensional and all
vectors are in R?. Then udu/z is replaced by ji-Vu, the Laplace operator
—A replaces —9%u/0x” and o2 becomes oo’ with a matrix o.

The stochastic ODE for each asset is

dsS; = S; (,U,idt + UdeZ) (32)
but the Weiner processes are corrolated by
< dWldW] >= pijdt, pij € (—1, 1) (33)
so that the generalized Black and Scholes equations is
1 o 0%u ou
8tu+§ Z O’ia'jpijSiSjM+ZTxiaixifTU:0. (34)

i,j=1

which can also be written in divergence form as (recall that p;; = pj;)

1w d du du
Oeut 5 .Zl UinPija—xi(wiSja?j)+Zwia—xi(r—0i ZUjPij) —ru=0.
1,]= J
(35)
An option on two assets leads to a Black-Scholes equations in two space
variables, For example in Jarrow([5] or Wilmott[10].

(o101 0% (oaa)? 0%
2 0% 2 03

ou  +
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—_rPp=
os ~TP=0 (30)

+  prixe

which is to be integrated in (0,7) x RT x R' subject to, in the case of a
put

u(z1, 22, T) = (K — max(z1,22)) " (37)

Boundary conditions for this problem may not be so easy to device.

As in the one dimensional case the PDE contains boundary conditions
on the axis 1 = 0 and on the axis z2 = 0, namely two one dimensional
Black-Scholes equations driven respectively by the data u(0, 400, T") and
u(400,0,T). These will be automatically accounted for because they are
embedded in the PDE. So if we do nothing in the variational form (i.e.
if we take a Neuman boundary condition at these two axis in the strong
form) there will be no disturbance to these.

At infinity in one of the variable, as in 1D, it makes sense to match the
final condition:

+6r(T7t)

u(z1, z2,t) = (K — max(z1,z2)) when |z| — oco. (38)

For an American put we will also have the constraint

w(ar, w2, t) > (K — max(z1,z2)) Te™ @Y, (39)

5 Mesh adaption with triangular finite
elements

5.1 Automatic triangulation of a square
5.1.1 The problem

Assume that we are given N+4 points the last four of which defines a

square containing all the other points. The points are numbered (qo, .

gV N gVt gV TR gV )

5.1.2  Algorithm

We maintain a list of triangles. At start it is the two triangles (¢~ , ¢V *?!,
gV, (@2 ).
Then we perform a loop on the points, backward for simplicity:

for i=N-1 down to 0 do

q

e case 1: there exists a triangle of the list which contains ¢ strictly.
then replace this triangle by the 3 subtriangles which have ¢* for
vertex.

e case 2: the point ¢’ is on the bprder of the square. Then find the
unique triangle which contains q" and replace it by the 2 subtriangles
which have ¢* for vertex.

e case 3: There are two triangles which contain ¢ (i.e. q" is on an inner
edge. Then each triangles must be replaced by the two sutriangles
which have ¢* for vertex..



5.1.3 The Delaunay criteria

The previous triangulation is admissible for the finite element method but
it is a bad one, it ”"looks terrible”. By this we mean that there are many
obtuse angles and small triangles near to large ones.

Notice that to each inner edge of a triangulation we can associate a quad-
rangle made of the two triangles adjacent to the edge.

A triangulation is said to be ”Delaunay” if for each edge the circle cir-
cumscribing one triangle does not contain the fourth vertex.

Edge swap If the 4 vertices of a quadrangle associated to an inner edge
are not cocyclic then the two configurations obtained by swapping diago-
nals in the quadrangle, one is Delaunay, the other is not.

Proposition When a configuration becomes Delaunay by an edge swap
the minimum angle in the 2 triangles increase.

Algorithm
Loop until nothing changes
Loop on the inner edges E

e Find the 2 triangles Tx,Ti adjacents to E; denote ¢', ¢?, ¢ the ver-
tices of T) and by ¢2, ¢*, ¢* those of T}.

e Check the Delaunay criteria. If it fails replace Ty, T; by the triangles
¢’,q",¢" and ¢*,¢%, ¢

Proposition The algorithm converges.

Indeed at each loop the smallest angle increase. When it no longer in-
creases then the next to smallest angle increase.... The number of configu-
rations being finite the process converges. The complexity of the algorithm
is O(N) (See [3] for more details).

5.1.4 Generation of interior points

In practice we use the previous algorithm without interior points; all ver-
tices are on the boundary. We assume that the user has input his request
on vertex density through the density of points on the boundary.

So each vertex has a weight. For boundary vertices it is the average length
of the two surrounding boundary edges.

Then we perform the following test on each edge of the triangulation:

e the length of an edge is larger than the average weigth of its vertices
then we divided the edge by adding a middle point and assigning to
it the average of the weights of the two vertices of the edge.

Then the triangulation algorithm is applied again to the new set of
points.
And so on till no edge is divided.



5.2 Mesh adaption to a function

Mesh adaption is an important asset of unstructured mesh solvers. In [4]
an adaptive procedure is presented, based on a change of metric in the
Delaunay - Voronoi algorithm.

The idea is that the error of interpolation on a mesh is bounded by

lu = unll < CIV(Vu)||n*

where V(Vu) is the Hessian matrix of u. Therefore an attempt to keep
ETV(Vu)E constant is likely to work and build an adapted anisotropic
mesh. If several functions are specified as for the mesh adaption, for
instance u and v then it is min{k”V(Vu)h, k" V(Vv)h} which will be
kept constant and equal to €. More precisely the method is to apply
the Delaunay-Voronoi triangulation algorithm with the distance based on
these Hessians (so that circles become ellipses). It is however substantially
more complex because a function may have a non positive definite Hessian.

To define a metric the Hessian is diagonalized:

_ 0uf0x®  8%u/0zdy \ _ A0 -1
V(V“)(a%/axay Puar )R o0 xR

where R is the eigenvectors matrix of V(Vu) and A; its eigenvalues. The
metric is defined by the scalar product 27 My, x,y € R? with M defined
by:

0 Xo € 7h$mm)7 h2 ):

min

M—R( A0 >R_1, and X; :min(max(l)\i| ! !

with hpin and hpae being the minimal and maximal edge lengths allowed
in the mesh and e the tolerance.
The parameter ¢ is left at the choice of the user.

6 Numerical test

In freefem and freefem+ (a general PDE solver available on the web) mesh
adaption is implemented and so it was easy to test the method for the two
dimensional American put option described above, with the constants

01=03, 02=03, p=03, r=0.05 K=40, T=0.5 (40)

An implicit Euler scheme with projection is used and a mesh adaption
is done every 10 time steps. The first order terms are treated by the
Chracteristic Galerkin method, which, schematically, approximates

ou ou ou 1, ni1 n

— — — = — — aot 41

o T Mgr T2, 5 (@) —ul(z —adt)) (41)
The listing of the freefem program is given below. The program is self-
explainatory and gives all the numerical values needed to reproduce the
test.

10



Figure 1: The mesh after 3 adaptions displayed flat and on the surface of the
solution u. On the right the solution is displayed with shades as the surface
x1, Ta,u(ry, x2). Notice that it captures quite well the singularities of the solu-
tion, namely the position of the free boundary and the line x1 = z5.

—

\
|

Figure 2: The level lines of u are displayed at ¢t = 0.5 (left) for an adapted mesh

(2 adaptations) and t = 1 for a refined mesh (center) with 4 adaptations and a
random mesH. All 3 meshes have around 1500 vertices.

Figure 3: The level lines of U — max(K —max(z1,x2)). Where the triangles are
seen, it means it is zero. The free boundary is the first line next to the triangles.
On the left it is for ¢t = 0.5 In the center and on the right for ¢ = 1, the right
figure being with a non-refined random mesh
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wait:=0; m:=20; L:=80; LL:=80;
border aa(t=0,L){x=t;y=0};
border bb(t=0,LL){x=L;y=t};
border cc(t=L,0){x=t ;y=LL};
border dd(t=LL,0){x = 0; y = t};
mesh th = buildmesh(aa(m)+bb(m)+cc(m)+dd(m));
sigmax:=0.3; sigmay:=0.3; rho:=0.3; r:=0.05;
K=40; dt:=0.02;
f = max(X-max(x,y),0);
fempl(th) u=f;
fempl(th) xveloc = -x*r+x*sigmax”2+x*rho*sigmax*sigmay/2;
fempl(th) yveloc = -y*r+y*sigmay”2+y*rho*sigmax*sigmay/2;
j:=0;
for n=0 to 0.5/dt do
{
solve(th,u) with AA(j){
pde(u) wx(r+1/dt)
- dxx(u) *(x*sigmax) "2/2 -dyy(u)*(y*sigmay) ~2/2
- dxy (u) *rho*sigmax*sigmay*x*y/2
- dyx(u) *rho*sigmax*sigmay*x*y
= convect(th,xveloc,yveloc,dt,u)/dt;
on(aa,dd) dnu(u)=0;
on(bb,cc) u = f;
};
u = max(u,f); plot("uf",th, u-f);
if(j==10) then {
mesh th = adaptmesh("th",th,u);
fempl(th) xveloc = -x*r+x*sigmax”2+x*rho*sigmax*sigmay/2;
fempl(th) yveloc = -y*r+y*sigmay 2+y*rho*sigmax*sigmay/2;
fempl(th) u=u;
wait:=0; ji=-1;
b 3=+
};

6.1 Acknowledgement

Claude Martini, being our source of knowledge in financial mathemat-
ics, must be acknowledged and thanked warmly for his cooperation and
interest in this study.

References

[1] D. Bernardi, F.Hecht, K. Ohtsuka, O. Pironneau: freefem+ documen-
tation, on the web at ftp://ftp.ann.jussieu.fr/pub/soft/pironneau

[2] D. Bernardi, F.Hecht, O. Pironneau, C. Prud’homme: freefem docu-
mentation, on the web at http://www.asci.fr

[3] P.L. George: Automatic triangulation, Wiley 1996.
[4] F. Hecht: The mesh adapting software: bamg. INRIA report 1998.

12



[5] R. Jarrow, A. Rudd: Option pricing R. Irwin publishing co. Illinois
1983.

[6] B. Lucquin, O. Pironneau: Scientific Computing for Engineers Wiley
1998.

[7] C.Martini: Premia: a general software for option pricing. INRIA tech
report 1999.

[8] R. Nicolaides: Far field boundary conditions for the Black-Scholes
model in finance. Carnegie-Melon report, Math dept. 1998.

[9] O. Oleinik: On the smoothness of solutions of degenerate elliptic and
parabolic equations. J. Doklady. vol 163, No 3. pp 972-976 (1965)

[10] P. Wilmott, x. Howinson, J. Dewynne, The mathematics of financial
derivatives, a sutdent introduction. Cambridge U press, 1997.

13



