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Over the years, many variants, extensions and adaptations of local search techniques have 

appeared in the literature. Some of them have become extremely famous, such as 

Simulated Annealing. Other ones have almost been forgotten, for example, “Record-to-

Record Travelling” (Dueck 1993) or the “Old Bachelor Acceptance Algorithm” (Hu et al. 

1995). In this abstract, we are proposing another new local search strategy. It is simple 

and, in many ways, rather obvious. We have made an exhaustive search through the 

optimization literature, but have not found the same idea in a published paper. We have 

termed this method the “Late Acceptance Strategy”. However, if it eventually emerges 

that the same approach has already been published then this paper could be considered to 

be a reminder about a “forgotten” way of improving a local search procedure. 

As the basis of our proposed method, we take a simple Hill-Climbing algorithm. 

Although its performance is known to be relatively worse than that of more sophisticated 

metaheuristics, it is still very popular thanks to its simplicity. It is also widely used in 

different hybridizations, such as guided, multi-start or variable neighborhood search 

methods (see Glover and Kochenberger 2003; Burke and Kendall 2005). Hill Climbing is 

an iterative process. At each iteration, a current solution is used to determine the 

acceptance of a new candidate. In other words, a candidate solution is compared with a 

current one and accepted when its cost function is not worse. Our idea is to delay this 

comparison, namely: to compare the candidate solution with a solution, which was 

“current” several steps before. Here, each current solution still takes on the role of an 

acceptance benchmark, but it will be used at later steps.  



In a similar way to Tabu Search, this algorithm maintains a list of a given length L. 

However, the list contains no information about executed moves, but it does contain 

previous values of the cost function Ĉk , where k ∈ {1...L}. At each iteration, a candidate 

cost is compared with the last element of the list ĈL . The comparison method is the same 

as in Hill-Climbing, i.e. the candidate solution is accepted when its cost is equal to or 

better than ĈL . After the comparison and the acceptance procedure, the new current cost 

(it can be equal either to the previous cost or to the cost of the accepted candidate) is 

inserted into the beginning of the list (for later comparison), and correspondingly, the last 

element is removed from the list. It could be also suggested that, at the beginning of the 

search, all elements of the list are the same and are equal to the initial cost function.  

Although, in Tabu Search, the increase of the length of the tabu list always causes 

higher computational expense, the Late Acceptance strategy is free from this drawback. 

First, we do not have to enumerate the complete list at each step: just shift forward its 

elements. Second, we can eliminate the shifting by simple recalculation. Here the 

“physical” list remains static, but its “virtual” beginning v is calculated dynamically as a 

reminder of the division of the current number of iteration I to the length of the list L 

(v = I mod L). Thus, the search can maintain a list of any length without extra expense. 

The complete search procedure is summarized in Algorithm 1. 

Algorithm 1 General purpose Late Acceptance Hill-Climbing methodology (LAHC) 

Produce an initial solution s 

Calculate initial cost function C(s) 

for all k∈{0...L-1} do  Ĉk ← C(s) 

Assign the initial number of iteration I ← 0; 

do until a chosen stopping condition: 

   Construct a candidate solution s* 

   Calculate its cost function C(s*) 

   v ← I mod L 

   if C(s*)≤Ĉv 

   then accept candidate (s ← s*) 

   Insert cost value into the list Ĉv  ← C(s) 

   Increment the number of iteration I ← I+1 

end do 



We can indicate several motivations behind the Late Acceptance strategy. Firstly, this 

method allows some worsening moves, which (as might be expected) should prolong the 

search time and simultaneously help to avoid local minima. Secondly, it depends on a 

single genuine parameter, i.e. the length of the list L (rather than a function, like in 

Simulated Annealing or the Great Deluge Algorithm). Therefore, it could be seen to be 

less vulnerable to inadequate parameterization. Thirdly, it draws upon an idea of Laguna 

and Glover (1996) of the “intelligent” use of information, collected during the search (but 

in a different way than that used in Tabu Search). Here, the list of previous cost functions 

determines a pattern for further decisions, and this pattern reflects specific properties of a 

current problem’s neighborhood. In this context, it can be viewed as a yet unstudied 

variant of Adaptive Memory Programming (see Taillard et al. 2001).  

We investigated the performance of the proposed method by applying it to Exam 

Timetabling problems using a model from our previous studies (see Burke et al. 2004; 

Burke and Bykov 2008). It starts from the Saturation Degree initialization procedure. 

Afterwards an iterative search is used, which performs the following moves: we move a 

random exam into a random timeslot (using Kempe chains in the case of infeasibility) 

and we swap two randomly chosen timeslots. The search is run for as long as it is able to 

improve a current solution, i.e. we stop it when no further improvement is possible. In the 

present study, convergence is considered to have taken place after 50000 idle moves. 

However, optimizing this parameter is the subject of further investigation (see the 

discussion below). 13 benchmark problems were taken from the University of Toronto 

collection. The notation from Qu et al. (2009) is used. Statistics were collected during 

three experiments, while running each experiment 20 times over each problem. 

In the first experiment, we estimated a lower bound of the performance of our 

method, i.e. when L=1 (which corresponds to pure Hill-Climbing). The second 

experiment was carried out with L=500 for all problems. In the third experiment, we have 

empirically customized the length of the list for each benchmark problem in order to run 

the search for approximately 10 minutes. All results (best and average costs, average run 

times and L in the third experiment) are presented in Table 1. 



Table 1 Performance of HC and LAHC for benchmark problems 

Pure HC (L=1) LAHC with L=500 LAHC with custom list length  

Problem 
Result 

(best/av) 

Av. time 

(sec) 

Result 

(best/av) 

Av. time 

(sec) 
L 

Result 

(best/av) 

Av. time 

(sec) 

Car92  4.33/4.52 34 3.93/4.08 184 2000 3.81/3.92 604 

Car91  5.24/5.46 55 4.77/4.89 329 1300 4.58/4.68 665 

Ear83 I  36.62/37.94 3 33.22/34.13 18 14000 32.65/32.91 450 

Hec92I 10.94/11.60 1 10.32/10.70 2 120000 10.06/10.22 590 

Kfu93  13.99/14.72 6 13.02/13.40 113 5000 12.81/13.02 882 

Lse91  11.11/12.02 5 10.08/10.53 150 4000  9.86/10.14 641 

Pur93 4.88/5.08 584 4.32/4.39 3332 100 4.53/4.71 747 

Rye92 8.79/9.15 9 8.17/8.36 68 5000 7.93/8.06 901 

Sta83I 157.17/157.51 1 157.03/157.13 2 60000 157.03/157.05 587 

Tre92 8.74/8.99 7 8.09/8.25 38 9000 7.72/7.89 608 

Uta92I 3.62/3.72 43 3.29/3.37 219 1500 3.16/3.26 805 

Ute92 25.57/26.45 1 24.87/25.03 8 30000 24.79/24.82 528 

Yor83I 38.07/39.27 3 36.34/37.17 15 19000 34.78/35.16 502 

As we expected, the increase of L increases the computational cost and 

simultaneously helps to achieve much better solutions. In Table 2 we give a brief 

comparison of our results with best previously published ones using the survey of Qu et 

al. (2009). 



Table 2 Comparison of LAHC with best published results 

Problem Carter et al. 

1996 

Casey and 

Thompson 

2003 

Yang and 

Petrovic 

2005 

Burke et al. 

2009 

Caramia et al. 

2008 
LAHC 

Car92 6.2 4.4 3.93 4.0 6.0 3.81 

Car91 7.1 5.4 4.5 4.6 6.6 4.58 

Ear83I 36.4 34.8 33.7 32.8 29.3 32.65 

Hec92I 10.8 10.8 10.83 10.0 9.2 10.06 

Kfu93 14.0 14.1 13.82 13.0 13.8 12.81 

Lse91 10.5 14.7 10.35 10.0 9.6  9.86 

Pur93 3.9 - - - - 4.32 

Rye92 7.3 - 8.53 - 6.8 7.93 

Sta83I 161.5 134.9 158.35 159.9 158.2 157.03 

Tre92 9.6 8.7 7.92 7.9 9.4 7.72 

Uta92I 3.5 - 3.14 3.2 3.5 3.16 

Ute92 25.8 25.4 25.39 24.8 24.4 24.79 

Yor83I 41.7 37.5 36.35 37.28 36.2 34.78 

It can be seen that this simple and straightforward approach produces strong results. 

Finally we should point out some general issues. 

• We have presented here a very early study of a new proposed technique. Obviously, 

its properties require further investigation. For example, when the list is quite long 

the presented algorithm tends to make an extremely slow improvement in the final 

phase of the search. We have observed that sometimes 50000 idle moves were not 

sufficient for the recognition of “true” convergence. This number should probably be 

calculated as a percentage of the total number of moves, but this issue needs to be 

more deeply studied. 

• In addition to the proposed algorithm, the basic idea of the Late Acceptance 

approach could be implemented in different ways. For example, we can imagine an 

alternative variant where the benchmark cost is not taken from the end of the list, but 

chosen randomly over all its elements. 



• We have applied here the proposed technique to Exam Timetabling problems. 

However, we think that the Late Acceptance technique could be effective as a 

general purpose strategy, which can be applied to any problem where Hill Climbing 

is applicable. We have already tested it on Grid Scheduling problems and it showed 

a high level of performance. 

• We presented here the Late Acceptance strategy applied within Hill Climbing. 

However it can be embedded into any search method, where a candidate cost is 

compared with a current one. For example, we could propose the use of the Late 

Acceptance strategy with Simulated Annealing, Functional Annealing or Threshold 

Acceptance methods. 
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