
638 Computers, Networks, Systems, and Industrial Appications

A Practical Transformation from LTL to Automata *

Cong Tian and Zhenhua Duan*

ICTT and ISN Lab, Xidian University, Xi' an, 710071, P.R. China

Abstract. A new linear transformation from PLTL formulas to alternating au-
tomata is proposed in this paper. To this end, C-F normal forms and Normal Form
Graphs (NFGs) are defined for PLTL formulas. Further, based on them,
Generalized Alternating Biichi Automata (GABA) of PLTL formulas are built. In
addition to the conciseness in theoretical aspect, the new transformation is useful
in improving the scalability of LTL model checking tools in practise.

1 Introduction

Model checking is an important approach for the verification of hardware, softwares,
multi-agent systems, communication protocols, embedded systems and so forth. In the last
two decades, several model checkers such as SPIN and SMV were developed with
success. It is fair to say that automated verification is one of the most successful appli-
cations of automated reasoning in computer science [1].

Generally, to check the linear-time properties of systems, Linear Temporal Logic
(LTL) plays important roles for the specification purpose. The automata-theoretic ap-
proach offers a uniform algorithmic framework for model checking Propositional LTL
(PLTL). The seminal theory of this approach was worked out in the 80s and the basic
algorithms were developed during the 90s. Transforming from PLTL formulas to au-
tomata is a key step in PLTL model checking. Originally, the transformation [2, 3] was on
mathematical simplicity, it was not appropriate for explicit model checking, since the
automata constructed were always exponential in the size of the formula. On a demand-
driven basis, an optimized translation [4] that avoided the exponential blow-up in many
cases of practical interest was developed and used in the explicit model checker SPIN.
Based on the optimization on the original transformation [5], symbolic model checkers
such as NuSMV were developed. Also, a transformation via alternating automata was
described in [6] motivated by mathematical simplicity [1].

As model-checking pervading into the industrial applications, efficient and applicable
model checking algorithms are appealed. Thus, several improvements have been given to
get a better translation from PLTL to automata during the last few years [7-12]. However,
most LTL translation tools are research prototypes and cannot be considered industrial
quality tools. Factually, when dealing with complex formulas, most of the translators do
not work. Motivated by this, a new linear transformation from PLTL formulas to
alternating automata is proposed in this paper.

* This research is supported by the NSFC Grant No. 61003078, 61133001 and 60910004,
973 Program Grant No. 2010CB328102 and ISN Lab Grant No. ISN1102001. t
Corresponding author.



Session5C639

The paper is organized as follows. The next section briefly presents the
preliminaries concerning PLTL and Alternating Biichi Automata (ABA). In section 3,
C-F normal forms are defined for PLTL formulas. Based on it, a transformation form
PLTL formulas to ABAs is presented.

2 Preliminaries

2.1 Propositional Linear Temporal Logic

We use the terminology from [18]. Given a nonempty finite set AP of atomic proposi-
tions, the set of all PLTL formulas over AP is the set of formulas built from elements
from AP using negation H, disjunction (V), next operator (0), and the until operator
(U). The abbreviations true, false, A, —, and <--> are defined as usual. In particular,

def def
true = 0 v -,0 and false = 0 A —10 for any formula 0. In addition, eventually (0)

and always (0) temporal operators can be derived by 00 dg true U 0 and 00 cig —10-10
respectively.

It has been proved that any PLTL formula can be transformed into a negation normal
form where all negations are adjacent to atomic propositions by employing an auxiliary
temporal operator U. Negation normal form of PLTL is defined in Definition 1.

Definition 1 (Negation Normal Form) For P E AP, the set of PLTL formula in nega-

tion normal form is defined by: 0::=PHP10v010A01 0010U010 0 0, where
-,(0 U 0) E (-10 U -10), and -,(0 U 0) E (-10U-,0). 0

The worst-case time complexity of transforming a PLTL formula into negation
normal form is linear in the length of 0, denoted by 101.

Similar to the typical propositional logic, we also define disjunction normal forms
for PLTL formulas by treating formulas without 'v' and 'A' being the main operators as
literals. Formally, P, -43, where P E AP, are literals; and 00, 0 U fp as well as 0 U yo,
where 0 and co are PLTL formulas, are literals.

Definition 2 (Disjunction Normal Form, DNF) A PLTL formula is in disjunction
normal form iff it is a disjunction of some conjuncts of some literals. o

It is obvious that any PLTL formula can be transformed into its disjunction normal
form. For convenience, D(0) is used to denote the DNF of PLTL formula 0.

2.2 Alternating Biichi Automata

Within traditional automata theoretics, nondeterminism gives a computing device the
power of existential choice. Its dual gives a computing device the power of universal
choice. Motivated by this, alternating automata where both existential choice and
universal choice are permitted are proposed [13, 14]. To introduce alternation transi-
tions into automata, positive Boolean formulas built form set of states are useful. For a
given set X of states, 1:)+(X) means the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using A and v). We say that Y c X satisfies a
formula 0 E I (X) if the truth assignment that assigns true to the members of



640 Computers, Networks, Systems, and Industrial Appications

Y and assigns false to the members of X — Y satisfies O. For example, the set {s1, s3} and

(Si, s4} both satisfy the formula si A S3 V s3 A 54, while the set {s1, s4} does not.

Accordingly, alternating Biichi automata are formally defined bellow [15].

Definition 3 An Alternating Biichi Automaton (ABA) is a tuple A = (E, Q, qo, 6, F),

where E is a finite alphabet, Q is a finite set of states, qo E Q is the initial state, F E 2Q is a

set of finial states sets, and 6 : Q x E —> 1.±(Q) is a transition function that maps a

state and an input letter to a positive boolean combination of states. ❑

Because of the universal choice in alternating transitions, a run of an alternating
automaton is a tree rather than a sequence. A run of an ABA A on an infinite word w = so,

si, s2, ... is an Q-labeled tree r such that r(E) = qo, and for each i, if lx1 =

r(x) = q, and 6(q, si) = 6, then x has k children x1, xk, for some k IQI, and
tr(xi), r(xk)} satisfies 0. A run tree is accepting iff all paths in the run tree satisfy the
Biichi condition that there exist infinite many positions on the path being labeled with

final state.
Considering that Generalized Biichi Automata (GBA) are often immediate results of

the transformations from temporal logics to automata, we also present its alternating

version.

Definition 4 A Generalized Alternating Bfichi automaton (GABA) is a tuple GA = (E, Q,
qo, 6, F = {F1, ..., F,}), where E is a finite alphabet, Q is a finite set of states, qo E Q is the

initial state, F is a set of accepting sets 1F1, Fn} for n > 0 with F, c Q, ancIS : Q x —>
I:±(Q) is a transition function that maps a state and an input letter to a

positive boolean combination of states. ❑

A run of a GABA GA on an infinite word w = so, Si, S2, ... is an Q-labeled tree r such

that r(E) = qo, and for each i, if Ix' = i, r(x) = q, and 6(q, si) = 0, then x has

k children xi, ..., xk, for some k IQI, and {r(xi), r(xk)} satisfies 19. A run tree is
accepting iff for each acceptance set Fi E F, there exists a state in F, that appears in each
path of the run tree infinitely often. A word w is accepting if there exist a run tree on w
which is acceptable in GA.

3 From PLTL Formulas to GABAs

In this section, we show how PLTL formulas can be equivalently transformed to GABAs

by the usage of C-F normal forms.

3.1 CF-Normal Forms for PLTL

In this section, when concerning a PLTL formula, it indicates a PLTL formula in negation
normal form. In what follows, CF-normal form (namely current and future normal form)

is defined for PLTL formulas. Originally, this normal form was used in [16, 19] for

dealing with Projection Temporal Logic (PTL).

Let Atom() be the set of atomic propositions occuring in 0, lAtom(0)1 = n, V be the set

of all possible valuations Atom(0) —> {true, false}, and for each v E V, let fiv be the

formula a1 A ... A an where for each i, 1 < i < n, ai a Pi if v(P,) = true and a, a- if
v(Pi) = false, where P, E Atom().



Lchi LO5J

Session 5C 641

Definition 5 The CF-normal form of PLTL formula 0 can be defined by, 0 V /3 A
veV

011)(40fv), where f3, is different from each other; and each Of, is an arbitrary PLTL
formula which is rewritten into disjunction normal form by D(Ofv). ❑

In the normal form, each f3v A OD(0fv), is called a basic component of the normal
form. In each basic component, fly indicates the assignment of each proposition in
Atom() at the current state, while D(0 f,,) denotes that at the next state D(Ofv) holds.
Thus, CF-normal form splits a PLTL formula into current parts and future parts. The
following theorem shows that any PLTL formula can be rewritten into its CF-normal
form.

Theorem 1 Any PLTL formula 0 can be rewritten into its CF-normal form. 0

The proof provides an approach for rewriting a PLTL formula into its CF-normal
form and can be found in the Appendix.

3.2 From PLTL Formulas to NFGs

Roughly speaking, Normal Form Graph (NFG) of a PLTL formula is constructed by
repeatedly decomposing the PLTL formula and the new generated formulas to the current
and next states according to C-F normal forms. The general idea for constructing NFGs is
as bellow. To construct NFG of 0, initially, a root node Lo j is created. Then we
rewrite 0 to its normal form. Let 0EpArn A, 2) V p A A 0(03 V 54 A 05).
As illustrated in Fig.l, five new nodes: LO1J, LO2J, 1_031 LO4J and L05] are created; and

1 . 0 3 J

Fig.1. Constructing NFGs

the following relations between the new created nodes and the old ones are produced:

(1) Tao j, p A = A L02], (2) T(L0J, A r) = LO3J V 1_04] A 1_05_1• Then to construct
the whole NFG, L01_1, LO2J, LO3J, LP4J and LO5J need to be treated in a similar way. Note
that when creating a node koj, the new node will be added if node koj does not already exist,
otherwise only an edge back to the existing node koj is added. In the following, formal definition
of NFG is presented.

Definition 6 (Normal Form Graph, NFG) For a PLTL formula 0, NFG of 0 is a
directed graph, G = (S, so, r), where S denotes a non-empty finite set of nodes with so
E S being the initial node; T : S —> ±(S) is a transition function. Further, the set S of
nodes and the transition function T over the nodes are inductively defined as follows:



642 Computers, Networks, Systems, and Industrial Appications

1. so = {LOA and S = {LOJ1
2. For each [(pi E S , if co has not been decomposed, rewrite co into its C-F normal

form (p = V (131, A OD(C°fv)) with D(cofv) E V A then S = S U aqviii1, and
vcvj

z(L(PJ,fiv) = V A Lnvii_l for each i, j and v. ❑
j

A run of an NFG G on an infinite word A = qo, gi, q2, ... is an (S )-labeled tree r such
that r(E) = so, and for each i, if Ix' = i, r(x) = s, and 8(s, qi) = 0, then x has k children
x1, xk, for some k < IS I, and {r(xl), ..., r(xk)} satisfies O.

Further, based on the definition of NFGs, NFGs of PLTL formulas can be recur-
sively constructed.

Theorem 2 Let S be the set of nodes in the NFG of an arbitrary PLTL formula 0. We

have IS I < 2 x 101. ❑

3.3 From NFGs to GABAs

Since NFGs are precisely constructed according to the equivalent transformation of
PLTL formulas into the current and next parts. It is easy to achieve that: in the NFG of
formula 0, for a run tree r on the infinite word w = qo, gi , ..., if each until formula
occurs in any path of the run tree is fulfilled (i.e. for PUQ, a state where Q is satisfied
can be finitely found), then w 0; and for an infinite word w 0, a run tree r, where each
until formula occurs in any path of the run tree is fulfilled, on w can be found in the
NFG of 0.

Now we show how to identify whether or not the until formulas are fulfilled in the
paths of the NFGs by generalized Biichi condition. Given the NFG G = (S, so, 7-) of
PLTL formula 0, GABA GA = (E, Q, q0, 6, F) of 0 is obtained by: E =

AIVE VI; Q
= S, and go = so; S = T; F = }Q \ {141U0211 I 1_01UO2I E Q}.

In the transformation,
the set of the states and the transitions are identical to the ones in NFGs. For each node in
the form of L(fri UO2_1, an acceptance set is defined that consists all nodes excepting for

UO2J. As a special case, when there exist no nodes in the form of VI U021 F =

tQl. 3.4 Satisfiability and Complexity

Based on the transformation from PLTL formulas to GABAs, a decision procedure for
checking the satisfiability of a PLTL formula 0 is achieved by first constructing the
GABA GA of 0, and then checking the emptiness of GA. Further, by Theorem 2, the
complexity of the transformation from PLTL formulas to GABAs is linear to the length
of the formulas. And it has been known that the complexity for checking the emptyness
of alternating Biichi automata is exponential to the size of the automata [15]. Thus, our
decision procedure for checking the satisfiability of LTL formula is exponential which
matches the lower bound result [20].

However,compared to the existing transformations from PLTL to automata, the new
transformation is much more simple and intuitive. Moreover, since the transformation is
mainly achieved by gradually decomposing the formulas to the current and the next
states, a complete on-the-fly model checking approach can be obtained.



Session 5C 643

4 Conclusions

A new linear transformation from PLTL formulas to automata is given in this paper. The new

transformation is much more simple and intuitive than the existing ones. In the near future, a

supporting tool will be developed based on the new proposed methods. Also, we will take

several case studies to examine our approach and tool.

References

1. Moshe Y. Vardi. Automata-theoretic model checking revisited. VMCAI 07. LNCS 4349.
Springer, New York, pp 137C150.

2. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1C37, November 1994.

3. P.Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In Proc.
24th IEEE Symp. on Foundations of Computer Science, pages 185C194, Tucson, 1983.

4. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification,
Testing, and Verification, pages 3C18. Chapman & Hall, August 1995.

5. E.M. Clarke, 0. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
CAV94, pages 415-427, June 1994, Springer-Verlag.

6. M.Y. Vardi. Nontraditional applications of automata theory. International Symp. on Theo-
retical Aspects of Computer Software, LNCS 789, pages 575-597. Springer-Verlag, 1994.

7. N. Daniele, F Guinchiglia, and M.Y. Vardi. Improved automata generation for linear tem-
poral logic. CAV99, LNCS 1633, pages 249C260. Springer-Verlag, 1999.

8. K. Etessami and G.J. Holzmann Optimizing Bi,ichi automata. In Proc. 11th Intl Conf. on
Concurrency Theory, LNCS 1877, pages 153C167. Springer- Verlag, 2000.

9. C. Fritz. Constructing Bi,ichi automata from linear temporal logic using simulation relations
for alternating bchi automata. ICIAA03, LNCS 2759, pages 35C48. Springer-Verlag, 2003.

10. C. Fritz. Concepts of automata construction from LTL. In Proc. ICLPAIR 2005, LNCS
3835, pages 728-742. Springer-Verlag, 2005.

11. F Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. CAVOO, volume
1855 of Lecture Notes in Computer Science, pages 248C263. Springer-Verlag, 2000.

12. X. Thirioux. Simple and efficient translation from LTL formulas to Bi,ichi automata.
Electr. Notes Theor. Comput. Sci., 66(2), 2002.

13. J.A. Brzozowski and E. Leiss. Finite automata, and sequential networks. Theoretical
Computer Science, 10:19C35, 1980.

14. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114C133, 1981.

15. Moshe Y. Vardi. Alternating Automata and Program Verification. In Computer Science
Today. LNCS 1000, Springer-Verlag, pp.471-485, 1995.

16. Z.Duan, C.Tian and L.Zhang. A Decision Procedure for Propositional Projection
Temporal Logic with Infinite Models, Acta Informatica, 45(1):43-78, 2008.

17. A.Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Found. of Comp.
Sci.,pages 46-57,1977

18. Allen E.Emerson. Temporal and modal logic, in: Jan van Leeuwen, ed., Handbook of Theo-
retical Computer Science, volume B: Formal Methods and Semantics, 995-1072,1990.

19. Z.Duan. An Extended Interval Temporal Logic and A Framing Technique for Temporal
Logic Programming. PhD thesis, University of Newcastle Upon Tyne, May 1996.

20. A.P.Sistla and E.M.Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM, Volume 32, Issue 3, Pages: 733 - 749, 1985.


